The recognition of events in videos is a relevant and challenging task of automatic semantic video analysis. At present one of the most successful frameworks, used for object recognition tasks, is the bag-of-words (BoW) approach. However this approach does not model the temporal information of the video stream. In this paper we present a method to introduce temporal information within the BoW approach. Events are modeled as a sequence composed of histograms of visual features, computed from each frame using the traditional BoW model. The sequences are treated as strings where each histogram is considered as a character. Event classification of these sequences of variable size, depending on the length of the video clip, are performed using SVM classifiers with a string kernel that uses the Needlemann-Wunsch edit distance. Experimental results, performed on two datasets, soccer video and TRECVID 2005, demonstrate the validity of the proposed approach. © 2009 Springer Berlin Heidelberg.
Data di pubblicazione: | 2009 |
Titolo: | Video Event Classification Using Bag of Words and String Kernels |
Autore/i: | Lamberto, Ballan; Marco, Bertini; Alberto Del, Bimbo; Serra, Giuseppe |
Autore/i UNIMORE: | |
Nome del convegno: | ICIAP |
Luogo del convegno: | Vietri sul Mare, Salerno |
Data del convegno: | September 8-11, 2009 |
Volume: | 5716 |
Pagina iniziale: | 170 |
Pagina finale: | 178 |
Citazione: | Video Event Classification Using Bag of Words and String Kernels / Lamberto, Ballan; Marco, Bertini; Alberto Del, Bimbo; Serra, Giuseppe. - STAMPA. - 5716(2009), pp. 170-178. ((Intervento presentato al convegno ICIAP tenutosi a Vietri sul Mare, Salerno nel September 8-11, 2009. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris