A calibration algorithm of two cameras using observations of a moving person is presented. Similar methods have been proposed for self-calibration with a single camera, but internal parameter estimation is only limited to the focal length. Recently it has been demonstrated that principal point supposed in the center of the image causes inaccuracy of all estimated parameters. Our method exploits two cameras, using image points of head and foot locations of a moving person, to determine for both cameras the focal length and the principal point. Moreover with the increasing number of cameras there is a demand of procedures to determine their relative placements. In this paper we also describe a method to find the relative position and orientation of two cameras: the rotation matrix and the translation vector which describe the rigid motion between the coordinate frames fixed in two cameras. Results in synthetic and real scenes are presented to evaluate the performance of the proposed method.
Accurate self-calibration of two cameras by observations of a moving person on a ground plane / T., Chen; A., Del Bimbo; F., Pernici; Serra, Giuseppe. - STAMPA. - (2007), pp. 129-134. (Intervento presentato al convegno 2007 IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2007 tenutosi a London, gbr nel 5-7 September 2007) [10.1109/AVSS.2007.4425298].
Accurate self-calibration of two cameras by observations of a moving person on a ground plane
SERRA, GIUSEPPE
2007
Abstract
A calibration algorithm of two cameras using observations of a moving person is presented. Similar methods have been proposed for self-calibration with a single camera, but internal parameter estimation is only limited to the focal length. Recently it has been demonstrated that principal point supposed in the center of the image causes inaccuracy of all estimated parameters. Our method exploits two cameras, using image points of head and foot locations of a moving person, to determine for both cameras the focal length and the principal point. Moreover with the increasing number of cameras there is a demand of procedures to determine their relative placements. In this paper we also describe a method to find the relative position and orientation of two cameras: the rotation matrix and the translation vector which describe the rigid motion between the coordinate frames fixed in two cameras. Results in synthetic and real scenes are presented to evaluate the performance of the proposed method.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris