The notion of Gem-Matveev complexity (GM-complexity) has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper, we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via GM-complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2 and two exceptional fibers and, therefore, for all torus knot complements.
Computing Matveev's complexity via crystallization theory: The boundary case / Casali, Maria Rita; Cristofori, Paola. - In: JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS. - ISSN 0218-2165. - STAMPA. - 22:8(2013), pp. 1350038-1350067. [10.1142/S0218216513500387]
Computing Matveev's complexity via crystallization theory: The boundary case
CASALI, Maria Rita;CRISTOFORI, Paola
2013
Abstract
The notion of Gem-Matveev complexity (GM-complexity) has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper, we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via GM-complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2 and two exceptional fibers and, therefore, for all torus knot complements.File | Dimensione | Formato | |
---|---|---|---|
MR-PC_bounded_complexity_arXiv.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
985.42 kB
Formato
Adobe PDF
|
985.42 kB | Adobe PDF | Visualizza/Apri |
JKTR_2013.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris