Water is an omnipresent polar impurity that is expected to be the origin of many electric degradation phenomena observed in organic semiconductors. Here, we describe a microscopic model for polaron formation in the outermost layer of a pentacene crystal due to the polarization of a nearby water layer. The efficient coupling of a classical force field that describes the liquid with a tight-binding model that represents the pi system of the organic layer permits the calculation of nanosecond length trajectories. The model predicts that the reorientation of water dipoles stabilizes positive charge carriers on average by 0.6 eV and thus leads to a polaron trap state at the liquid interface. Thermal fluctuations of the water molecules provoke two-dimensional diffusive hopping of the charge carrier parallel to the interface with mobilities of up to 0.6 cm(2) s(-1) V-1 and lead to an amorphous broadening of the valence-band tail. As a consequence, water-filled nanocavities act as trapping sites in pentacene transistors. Instead, a complete wetting of the organic film is expected to result in fast thermally activated hopping transport. Polaron trapping is thus not expected to be a limiting factor for transistor-based sensors that operate under water.

Water-induced polaron formation at the pentacene surface: Quantum mechanical molecular mechanics simulations / T., Cramer; Steinbrecher, T. h.; Koslowski, T. h.; D. A., Case; Biscarini, Fabio; F., Zerbetto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - ELETTRONICO. - 79:(2009), pp. 155316-1-155316-10. [10.1103/PhysRevB.79.155316]

Water-induced polaron formation at the pentacene surface: Quantum mechanical molecular mechanics simulations

BISCARINI, FABIO;
2009

Abstract

Water is an omnipresent polar impurity that is expected to be the origin of many electric degradation phenomena observed in organic semiconductors. Here, we describe a microscopic model for polaron formation in the outermost layer of a pentacene crystal due to the polarization of a nearby water layer. The efficient coupling of a classical force field that describes the liquid with a tight-binding model that represents the pi system of the organic layer permits the calculation of nanosecond length trajectories. The model predicts that the reorientation of water dipoles stabilizes positive charge carriers on average by 0.6 eV and thus leads to a polaron trap state at the liquid interface. Thermal fluctuations of the water molecules provoke two-dimensional diffusive hopping of the charge carrier parallel to the interface with mobilities of up to 0.6 cm(2) s(-1) V-1 and lead to an amorphous broadening of the valence-band tail. As a consequence, water-filled nanocavities act as trapping sites in pentacene transistors. Instead, a complete wetting of the organic film is expected to result in fast thermally activated hopping transport. Polaron trapping is thus not expected to be a limiting factor for transistor-based sensors that operate under water.
2009
79
155316-1
155316-10
Water-induced polaron formation at the pentacene surface: Quantum mechanical molecular mechanics simulations / T., Cramer; Steinbrecher, T. h.; Koslowski, T. h.; D. A., Case; Biscarini, Fabio; F., Zerbetto. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - ELETTRONICO. - 79:(2009), pp. 155316-1-155316-10. [10.1103/PhysRevB.79.155316]
T., Cramer; Steinbrecher, T. h.; Koslowski, T. h.; D. A., Case; Biscarini, Fabio; F., Zerbetto
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/966504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 40
social impact