We describe a potentiometric sensor based on Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) for “in vitro” detection of dopamine. The sensing element of this device resides at the Au gate–aqueous solution interface by means of a self-assembled monolayer (SAM) composed by cysteamine and 4-formylphenyl boronic acid. The covalent and selective adsorption of dopamine induces a surface dipole potential which shifts the electrode work function and modulates the double layer capacitance. As a result, our device is capable to detect dopamine up to pico-molar concentration showing higher sensitivity with respect to other approaches. For this reason the interface engineering of our EGOFET gate is a promising route for diagnostic applications.
Organic field-effect transistor for label-free dopamine sensing / Casalini, S; Leonardi, F; Cramer, T; Biscarini, Fabio. - In: ORGANIC ELECTRONICS. - ISSN 1566-1199. - 14:1(2013), pp. 156-163. [10.1016/j.orgel.2012.10.027]
Organic field-effect transistor for label-free dopamine sensing
BISCARINI, FABIO
2013
Abstract
We describe a potentiometric sensor based on Electrolyte-Gated Organic Field-Effect Transistor (EGOFET) for “in vitro” detection of dopamine. The sensing element of this device resides at the Au gate–aqueous solution interface by means of a self-assembled monolayer (SAM) composed by cysteamine and 4-formylphenyl boronic acid. The covalent and selective adsorption of dopamine induces a surface dipole potential which shifts the electrode work function and modulates the double layer capacitance. As a result, our device is capable to detect dopamine up to pico-molar concentration showing higher sensitivity with respect to other approaches. For this reason the interface engineering of our EGOFET gate is a promising route for diagnostic applications.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1566119912004934-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris