We address the dynamics of entanglement and quantum discord for two noninteracting qubits initially prepared in a maximally entangled state and then subjected to a classical colored noise, i.e., coupled with an external environment characterized by a noise spectrum of the form 1/f α.More specifically, we address systems in which the Gaussian approximation fails, i.e., mere knowledge of the spectrum is not enough to determine the dynamics of quantum correlations. We thus investigate the dynamics for two different configurations of the environment: in the first case, the noise spectrum is due to the interaction of each qubit with a single bistable fluctuator with an undetermined switching rate, whereas in the second case we consider a collection of classical fluctuators with fixed switching rates. In both cases, we found analytical expressions for the time dependence of entanglement and quantum discord, which may also be extended to a collection of fluctuators with random switching rates. The environmental noise is introduced by means of stochastic time-dependent terms in the Hamiltonian, and this allows us to describe the effects of both separate and common environments. We show that the non-Gaussian character of the noise may lead to significant effects, e.g., environments with the same power spectrum, but different configurations give rise to the opposite behavior for quantum correlations. In particular, depending on the characteristics of the environmental noise considered, both entanglement and discord display either a monotonic decay or the phenomena of sudden death and revivals. Our results show that the microscopic structure of the environment, in addition to its noise spectrum, is relevant for the dynamics of quantum correlations and may be a valid starting point for the engineering of non-Gaussian colored environments.

Dynamics of quantum correlations in colored-noise environments / C., Benedetti; F., Buscemi; Bordone, Paolo; M. G. A., Paris. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - STAMPA. - 87:(2013), pp. 052328-1-052328-8. [10.1103/PhysRevA.87.052328]

Dynamics of quantum correlations in colored-noise environments

BORDONE, Paolo;
2013

Abstract

We address the dynamics of entanglement and quantum discord for two noninteracting qubits initially prepared in a maximally entangled state and then subjected to a classical colored noise, i.e., coupled with an external environment characterized by a noise spectrum of the form 1/f α.More specifically, we address systems in which the Gaussian approximation fails, i.e., mere knowledge of the spectrum is not enough to determine the dynamics of quantum correlations. We thus investigate the dynamics for two different configurations of the environment: in the first case, the noise spectrum is due to the interaction of each qubit with a single bistable fluctuator with an undetermined switching rate, whereas in the second case we consider a collection of classical fluctuators with fixed switching rates. In both cases, we found analytical expressions for the time dependence of entanglement and quantum discord, which may also be extended to a collection of fluctuators with random switching rates. The environmental noise is introduced by means of stochastic time-dependent terms in the Hamiltonian, and this allows us to describe the effects of both separate and common environments. We show that the non-Gaussian character of the noise may lead to significant effects, e.g., environments with the same power spectrum, but different configurations give rise to the opposite behavior for quantum correlations. In particular, depending on the characteristics of the environmental noise considered, both entanglement and discord display either a monotonic decay or the phenomena of sudden death and revivals. Our results show that the microscopic structure of the environment, in addition to its noise spectrum, is relevant for the dynamics of quantum correlations and may be a valid starting point for the engineering of non-Gaussian colored environments.
2013
87
052328-1
052328-8
Dynamics of quantum correlations in colored-noise environments / C., Benedetti; F., Buscemi; Bordone, Paolo; M. G. A., Paris. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - STAMPA. - 87:(2013), pp. 052328-1-052328-8. [10.1103/PhysRevA.87.052328]
C., Benedetti; F., Buscemi; Bordone, Paolo; M. G. A., Paris
File in questo prodotto:
File Dimensione Formato  
PhysRevA.87.052328.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 392.9 kB
Formato Adobe PDF
392.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/960693
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 100
  • ???jsp.display-item.citation.isi??? 46
social impact