Graph theory is being increasingly used to study the structural communication in biomolecular systems. This requires incorporating information on the system’s dynamics, which is time-consuming and not suitable for high-throughput investigations. We propose a mixed Protein Structure Network (PSN) and Elastic Network Model (ENM)-based strategy, i.e., PSN-ENM, for fast investigation of allosterism in biological systems. PSN analysis and ENM-Normal Mode Analysis (ENM-NMA) are implemented in the structural analysis software Wordom, freely available at http://wordom. sourceforge.net/. The method performs a systematic search of the shortest communication pathways that traverse a protein structure. A number of strategies to compare the structure networks of a protein in different functional states and to get a global picture of communication pathways are presented as well. The approach was validated on the PDZ2 domain from tyrosine phosphatase 1E (PTP1E) in its free (APO) and peptide-bound states. PDZ domains are, indeed, the systems whose structural communication and allosteric features are best characterized both in vitro and in silico. The agreement between predictions by the PSN-ENM method and in vitro evidence is remarkable and comparable to or higher than that reached by more time-consuming computational approaches tested on the same biological system. Finally, the PSN-ENM method was able to reproduce the salient communication features of unbound and bound PTP1E inferred from molecular dynamics simulations. High speed makes this method suitable for high throughput investigation of the communication pathways in large sets of biomolecular systems in different functional states.

A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study / Raimondi, Francesco; Felline, Angelo Nicola; M., Seeber; Mariani, Simona; Fanelli, Francesca. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - ELETTRONICO. - 9:(2013), pp. 2504-2518. [10.1021/ct400096f]

A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study

RAIMONDI, Francesco;FELLINE, Angelo Nicola;MARIANI, Simona;FANELLI, Francesca
2013

Abstract

Graph theory is being increasingly used to study the structural communication in biomolecular systems. This requires incorporating information on the system’s dynamics, which is time-consuming and not suitable for high-throughput investigations. We propose a mixed Protein Structure Network (PSN) and Elastic Network Model (ENM)-based strategy, i.e., PSN-ENM, for fast investigation of allosterism in biological systems. PSN analysis and ENM-Normal Mode Analysis (ENM-NMA) are implemented in the structural analysis software Wordom, freely available at http://wordom. sourceforge.net/. The method performs a systematic search of the shortest communication pathways that traverse a protein structure. A number of strategies to compare the structure networks of a protein in different functional states and to get a global picture of communication pathways are presented as well. The approach was validated on the PDZ2 domain from tyrosine phosphatase 1E (PTP1E) in its free (APO) and peptide-bound states. PDZ domains are, indeed, the systems whose structural communication and allosteric features are best characterized both in vitro and in silico. The agreement between predictions by the PSN-ENM method and in vitro evidence is remarkable and comparable to or higher than that reached by more time-consuming computational approaches tested on the same biological system. Finally, the PSN-ENM method was able to reproduce the salient communication features of unbound and bound PTP1E inferred from molecular dynamics simulations. High speed makes this method suitable for high throughput investigation of the communication pathways in large sets of biomolecular systems in different functional states.
9
2504
2518
A Mixed Protein Structure Network and Elastic Network Model Approach to Predict the Structural Communication in Biomolecular Systems: The PDZ2 Domain from Tyrosine Phosphatase 1E As a Case Study / Raimondi, Francesco; Felline, Angelo Nicola; M., Seeber; Mariani, Simona; Fanelli, Francesca. - In: JOURNAL OF CHEMICAL THEORY AND COMPUTATION. - ISSN 1549-9618. - ELETTRONICO. - 9:(2013), pp. 2504-2518. [10.1021/ct400096f]
Raimondi, Francesco; Felline, Angelo Nicola; M., Seeber; Mariani, Simona; Fanelli, Francesca
File in questo prodotto:
File Dimensione Formato  
Raimondi_etal_JCTC2013.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/955092
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 40
social impact