We provide a new approach to obtain solutions of evolution equations with nonlinear and nonlocal in time boundary conditions. Both, compact and noncompact semigroups are considered. As an example we show a “principle of huge growth”: every control of a reaction-diffusion system necessarily leads to a profile preserving nonlinear huge growth for an appropriate initial value condition. As another example we apply the approach with noncompact semigroups also to a class of age-population models, based on a hyperbolic conservation law.

Evolution Problems with Nonlinear Nonlocal Boundary Conditions / Irene, Benedetti; Taddei, Valentina; Martin, Vath. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - STAMPA. - 25:2(2013), pp. 477-503. [10.1007/s10884-013-9303-8]

Evolution Problems with Nonlinear Nonlocal Boundary Conditions

TADDEI, Valentina;
2013

Abstract

We provide a new approach to obtain solutions of evolution equations with nonlinear and nonlocal in time boundary conditions. Both, compact and noncompact semigroups are considered. As an example we show a “principle of huge growth”: every control of a reaction-diffusion system necessarily leads to a profile preserving nonlinear huge growth for an appropriate initial value condition. As another example we apply the approach with noncompact semigroups also to a class of age-population models, based on a hyperbolic conservation law.
2013
25
2
477
503
Evolution Problems with Nonlinear Nonlocal Boundary Conditions / Irene, Benedetti; Taddei, Valentina; Martin, Vath. - In: JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS. - ISSN 1040-7294. - STAMPA. - 25:2(2013), pp. 477-503. [10.1007/s10884-013-9303-8]
Irene, Benedetti; Taddei, Valentina; Martin, Vath
File in questo prodotto:
File Dimensione Formato  
Benedetti-Taddei-Vaeth1.pdf

Accesso riservato

Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 193.05 kB
Formato Adobe PDF
193.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/946699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact