Micron-sized metal powders carried by a nitrogen flow were fed along the axis of a cylindrical hydrogen/oxygen diffusion flame. The particles ignited and burned in the water vapor at approximately 2500 K. Experiments were performed at atmospheric pressure. The environment in which particles burned was characterized in detail using computational fluid dynamics. The computations confirmed that the metal powders burned in water while the effect of oxygen and other oxidizing species could be neglected. Combustion was characterized experimentally for micron-sized powders of both aluminum and magnesium. Particle size distributions were measured using low-angle laser light scattering. Optical emission of the burning particles was recorded using filtered photomultiplier tubes. Measured durations of individual particle emission pulses were assumed to represent their burn times; these data were classified into logarithmically spaced time bins. The distribution of the particle burn times was correlated with their size distributions assuming that larger size particles burned longer. It was observed that correlation between the burn times, t, and particle diameters, D, can be approximately described as t~D^0.64 and t~D^0.68 for aluminum and magnesium powders, respectively. The results were compared to previous reports and possible reasons for discrepancies between the present and earlier results were discussed.
Combustion of Fine Aluminum and Magnesium Powders in Water / A., Corcoran; Mercati, Stefano; H., Nie; Milani, Massimo; Montorsi, Luca; E. L., Dreizin. - In: COMBUSTION AND FLAME. - ISSN 0010-2180. - STAMPA. - 160:10(2013), pp. 2242-2250. [10.1016/j.combustflame.2013.04.019]
Combustion of Fine Aluminum and Magnesium Powders in Water
MERCATI, Stefano;MILANI, Massimo;MONTORSI, Luca;
2013
Abstract
Micron-sized metal powders carried by a nitrogen flow were fed along the axis of a cylindrical hydrogen/oxygen diffusion flame. The particles ignited and burned in the water vapor at approximately 2500 K. Experiments were performed at atmospheric pressure. The environment in which particles burned was characterized in detail using computational fluid dynamics. The computations confirmed that the metal powders burned in water while the effect of oxygen and other oxidizing species could be neglected. Combustion was characterized experimentally for micron-sized powders of both aluminum and magnesium. Particle size distributions were measured using low-angle laser light scattering. Optical emission of the burning particles was recorded using filtered photomultiplier tubes. Measured durations of individual particle emission pulses were assumed to represent their burn times; these data were classified into logarithmically spaced time bins. The distribution of the particle burn times was correlated with their size distributions assuming that larger size particles burned longer. It was observed that correlation between the burn times, t, and particle diameters, D, can be approximately described as t~D^0.64 and t~D^0.68 for aluminum and magnesium powders, respectively. The results were compared to previous reports and possible reasons for discrepancies between the present and earlier results were discussed.File | Dimensione | Formato | |
---|---|---|---|
2013 COMBUSTION AND FLAME.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.97 MB
Formato
Adobe PDF
|
1.97 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris