We developed an educational path based on nitinol, a shape memory alloy which conveniently exemplifies the smart material concept, i.e., a material that performs a predetermined, reversible action in response to a change in the environment. Nitinol recovers a given shape, changes its resistivity drastically and modifies its elastic properties if subjected to a temperature change in a convenient range. Here, the properties are verified with laboratory protocols appropriate to a high-school environment. Use of mobile electronic devices is also suggested. The collected electrical and mechanical properties are analysed within a didactic path which emphasizes their common physical origin, i.e., the martensitic transition. Moreover, the peculiarities of this solid-to-solid transformation are put in correspondence with the apparently unrelated but more familiar liquid–vapour transition. The relationship with possible applications is emphasized by measuring the efficiency of using a nitinol spring as an actuator.
Educational pathways through nanoscience: nitinol as a paradigmatic smart material / Lisotti, Annamaria; DE RENZI, Valentina; Carlo Andrea, Rozzi; Elena, Villa; Franca, Albertini; Goldoni, Guido. - In: PHYSICS EDUCATION. - ISSN 0031-9120. - STAMPA. - 48:3(2013), pp. 298-311. [10.1088/0031-9120/48/3/298]
Educational pathways through nanoscience: nitinol as a paradigmatic smart material
LISOTTI, ANNAMARIA;DE RENZI, Valentina;GOLDONI, Guido
2013
Abstract
We developed an educational path based on nitinol, a shape memory alloy which conveniently exemplifies the smart material concept, i.e., a material that performs a predetermined, reversible action in response to a change in the environment. Nitinol recovers a given shape, changes its resistivity drastically and modifies its elastic properties if subjected to a temperature change in a convenient range. Here, the properties are verified with laboratory protocols appropriate to a high-school environment. Use of mobile electronic devices is also suggested. The collected electrical and mechanical properties are analysed within a didactic path which emphasizes their common physical origin, i.e., the martensitic transition. Moreover, the peculiarities of this solid-to-solid transformation are put in correspondence with the apparently unrelated but more familiar liquid–vapour transition. The relationship with possible applications is emphasized by measuring the efficiency of using a nitinol spring as an actuator.File | Dimensione | Formato | |
---|---|---|---|
Phys Educ 48 298 2013.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris