We describe recently proposed algorithms, denoted scaled gradient projection (SGP) methods, which provide efficient and accurate reconstructions of astronomical images. We restrict the presentation to the case of data affected by Poisson noise and of nonnegative solutions; both maximum likelihood and Bayesian approaches are considered. Numerical results are presented for discussing the practical behaviour of the SGP methods.
Scaled gradient projection methods for astronomical imaging / M., Bertero; P., Boccacci; Prato, Marco; Zanni, Luca. - STAMPA. - 59:(2013), pp. 325-356. (Intervento presentato al convegno Reconstruction d'images – applications astrophysiques tenutosi a Frejus, fra nel 19-22 giugno 2012) [10.1051/eas/1359015].
Scaled gradient projection methods for astronomical imaging
PRATO, Marco;ZANNI, Luca
2013
Abstract
We describe recently proposed algorithms, denoted scaled gradient projection (SGP) methods, which provide efficient and accurate reconstructions of astronomical images. We restrict the presentation to the case of data affected by Poisson noise and of nonnegative solutions; both maximum likelihood and Bayesian approaches are considered. Numerical results are presented for discussing the practical behaviour of the SGP methods.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris