Ensemble methods (or simply ensembles) for motif discovery represent a relatively new approach to improve the accuracy of standalone motif finders. In particular, the accuracy of an ensemble is determined by the included finders and the strategy (learning rule) used to combine the results returned by the latter, making these choices crucial for the ensemble success. In this research we propose a general architecture for ensembles, called CE3, which is meant to be extensible and customizable for what concerns external tools inclusion and learning rule. Using CE3 the user will be able to “simulate” existing ensembles and possibly incorporate newly proposed tools (and learning functions) with the aim at improving the ensemble’s prediction accuracy. Preliminary experiments performed with a prototype implementation of CE3 led to interesting insights and a critical analysis of the potentials and limitations of currently available ensembles.

CE^3: Customizable and Easily Extensible Ensemble Tool for Motif Discovery / PANUCIA TILLAN, Karina; Leoncini, Mauro; Montangero, Manuela. - STAMPA. - (2013), pp. 365-374. ((Intervento presentato al convegno International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO2013). tenutosi a Granada (Spagna) nel 18-20 Marzo 2013.

CE^3: Customizable and Easily Extensible Ensemble Tool for Motif Discovery

PANUCIA TILLAN, Karina;LEONCINI, Mauro;MONTANGERO, Manuela
2013

Abstract

Ensemble methods (or simply ensembles) for motif discovery represent a relatively new approach to improve the accuracy of standalone motif finders. In particular, the accuracy of an ensemble is determined by the included finders and the strategy (learning rule) used to combine the results returned by the latter, making these choices crucial for the ensemble success. In this research we propose a general architecture for ensembles, called CE3, which is meant to be extensible and customizable for what concerns external tools inclusion and learning rule. Using CE3 the user will be able to “simulate” existing ensembles and possibly incorporate newly proposed tools (and learning functions) with the aim at improving the ensemble’s prediction accuracy. Preliminary experiments performed with a prototype implementation of CE3 led to interesting insights and a critical analysis of the potentials and limitations of currently available ensembles.
International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO2013).
Granada (Spagna)
18-20 Marzo 2013
365
374
PANUCIA TILLAN, Karina; Leoncini, Mauro; Montangero, Manuela
CE^3: Customizable and Easily Extensible Ensemble Tool for Motif Discovery / PANUCIA TILLAN, Karina; Leoncini, Mauro; Montangero, Manuela. - STAMPA. - (2013), pp. 365-374. ((Intervento presentato al convegno International Work-Conference on Bioinformatics and Biomedical Engineering (IWBBIO2013). tenutosi a Granada (Spagna) nel 18-20 Marzo 2013.
File in questo prodotto:
File Dimensione Formato  
iwbbio_066.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 823.75 kB
Formato Adobe PDF
823.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/916690
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact