We study the longtime behavior of the Caginalp phase-field model with a logarithmic potential and dynamic boundary conditions both for the order parameter and the temperature. Due to the possible lack of distributional solutions, we deal with a suitable definition of solutions based on variational inequalities, for which we prove well-posedness and the existence of global and exponential attractors with finite fractal dimension.

Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions / M., Conti; Gatti, Stefania; A., Miranville. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 11:6(2013), pp. 11-21. [10.1142/S0219530513500243]

Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions

GATTI, Stefania;
2013

Abstract

We study the longtime behavior of the Caginalp phase-field model with a logarithmic potential and dynamic boundary conditions both for the order parameter and the temperature. Due to the possible lack of distributional solutions, we deal with a suitable definition of solutions based on variational inequalities, for which we prove well-posedness and the existence of global and exponential attractors with finite fractal dimension.
11
6
11
21
Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions / M., Conti; Gatti, Stefania; A., Miranville. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 11:6(2013), pp. 11-21. [10.1142/S0219530513500243]
M., Conti; Gatti, Stefania; A., Miranville
File in questo prodotto:
File Dimensione Formato  
S0219530513500243.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 424.69 kB
Formato Adobe PDF
424.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/858296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact