We study the longtime behavior of the Caginalp phase-field model with a logarithmic potential and dynamic boundary conditions both for the order parameter and the temperature. Due to the possible lack of distributional solutions, we deal with a suitable definition of solutions based on variational inequalities, for which we prove well-posedness and the existence of global and exponential attractors with finite fractal dimension.
Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions / M., Conti; Gatti, Stefania; A., Miranville. - In: ANALYSIS AND APPLICATIONS. - ISSN 0219-5305. - STAMPA. - 11:6(2013), pp. 11-21. [10.1142/S0219530513500243]
Attractors for a Caginalp model with a logarithmic potential and coupled dynamic boundary conditions
GATTI, Stefania;
2013
Abstract
We study the longtime behavior of the Caginalp phase-field model with a logarithmic potential and dynamic boundary conditions both for the order parameter and the temperature. Due to the possible lack of distributional solutions, we deal with a suitable definition of solutions based on variational inequalities, for which we prove well-posedness and the existence of global and exponential attractors with finite fractal dimension.File | Dimensione | Formato | |
---|---|---|---|
S0219530513500243.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
424.69 kB
Formato
Adobe PDF
|
424.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris