Sr-Nd-Pb isotopic ratios of zero age basalts sampled along Mid-Ocean Ridges (MOR) have demonstrated that the mantle is heterogeneous at a regional scale. However, how the mantle evolves through time below a single segment of MOR it is still matter of debate. Peridotites and basaltic glasses were collected along a lithospheric section uplifted and exposed on the southern side of the Vema transform (10$^{\circ}$ North, Atlantic Ocean) along a seafloor spreading flow line for a stretch of almost 200 km (corresponding to roughly 10 my). This set of samples offers a unique opportunity to detect changes through time of the mantle signature in a segment of Mid Atlantic Ridge, by analyzing radiogenic isotopes in the clinopyroxenes (cpx) from peridotites and glasses from the overlying basalts. Work is in progress; initial Sr and Nd measurements from cpxs within peridotites indicate several things. First, the cpxs display "depleted" mantle signatures. Second, there is a considerable variation of the isotopic ratios along the exposed section ($^{143}$Nd/$^{144}$Nd varies from 0.51293 to 0.51345, $^{87}$Sr/$^{86}$Sr varies from 0.70228 to 0.70422) and these variations occur over a short time scale (some occur within an interval of one million year). Next, the Sr and Nd ratios are inversely correlated and fall along the mantle array. Finally, cpx Nd ratios are inversely correlated with the Cr/Al ratio of the spinel and ortopyroxene (opx) from the peridotites while Sr ratios are positively correlated. Thus, the chemically most depleted peridotite with high Cr/Al ratios show the most enriched isotopic signatures, a pattern that has also been observed in alpine-type peridotites and peridotite nodules and that is generally interpreted as metasomatism by enriched fluids affecting depleted peridotite more extensively than less depleted peridotite. This may indicate that the temporal variations in the extent of melting detected by Cr/Al ratio in spinel and opx (Bonatti et al., Variations with age of mantle ultramafic composition near the Vema Fracture Zone, Central Atlantic. EOS, Vol.79, No.45, F919) are related to rapid changes in the degree of depletion of the upwelling mantle sources and that the degree of depletion of these mantle sources is an inherited feature from earlier processes rather than the result of melting at the MOR.
Temporal variations in the mantle source of MORB near the Vema fracture zone (Central Atlantic): Nd and Sr isotopes in peridotite and basaltic glasses / Cipriani, Anna; Brunelli, Daniele; Brueckner, H. K.; Bonatti, E.. - In: EOS. - ISSN 0096-3941. - (2001), pp. Abstract V12A-0955-..
Temporal variations in the mantle source of MORB near the Vema fracture zone (Central Atlantic): Nd and Sr isotopes in peridotite and basaltic glasses
CIPRIANI, Anna;BRUNELLI, Daniele;
2001
Abstract
Sr-Nd-Pb isotopic ratios of zero age basalts sampled along Mid-Ocean Ridges (MOR) have demonstrated that the mantle is heterogeneous at a regional scale. However, how the mantle evolves through time below a single segment of MOR it is still matter of debate. Peridotites and basaltic glasses were collected along a lithospheric section uplifted and exposed on the southern side of the Vema transform (10$^{\circ}$ North, Atlantic Ocean) along a seafloor spreading flow line for a stretch of almost 200 km (corresponding to roughly 10 my). This set of samples offers a unique opportunity to detect changes through time of the mantle signature in a segment of Mid Atlantic Ridge, by analyzing radiogenic isotopes in the clinopyroxenes (cpx) from peridotites and glasses from the overlying basalts. Work is in progress; initial Sr and Nd measurements from cpxs within peridotites indicate several things. First, the cpxs display "depleted" mantle signatures. Second, there is a considerable variation of the isotopic ratios along the exposed section ($^{143}$Nd/$^{144}$Nd varies from 0.51293 to 0.51345, $^{87}$Sr/$^{86}$Sr varies from 0.70228 to 0.70422) and these variations occur over a short time scale (some occur within an interval of one million year). Next, the Sr and Nd ratios are inversely correlated and fall along the mantle array. Finally, cpx Nd ratios are inversely correlated with the Cr/Al ratio of the spinel and ortopyroxene (opx) from the peridotites while Sr ratios are positively correlated. Thus, the chemically most depleted peridotite with high Cr/Al ratios show the most enriched isotopic signatures, a pattern that has also been observed in alpine-type peridotites and peridotite nodules and that is generally interpreted as metasomatism by enriched fluids affecting depleted peridotite more extensively than less depleted peridotite. This may indicate that the temporal variations in the extent of melting detected by Cr/Al ratio in spinel and opx (Bonatti et al., Variations with age of mantle ultramafic composition near the Vema Fracture Zone, Central Atlantic. EOS, Vol.79, No.45, F919) are related to rapid changes in the degree of depletion of the upwelling mantle sources and that the degree of depletion of these mantle sources is an inherited feature from earlier processes rather than the result of melting at the MOR.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris