In this paper we give sufficient conditions for the existence of solutions to the problem of minimizing the integral of [f ( ∇v) + v] on a convex n-dimensional set Ω . Here f is nonnegative, nonconvex, Borel-measurable, and vanishes on the boundary of a convex n-dimensional set K.

Existence of solutions for a class of non convex minimum problems / P., Celada; Perrotta, Stefania; G., Treu. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 228:(1998), pp. 177-199.

Existence of solutions for a class of non convex minimum problems

PERROTTA, Stefania;
1998

Abstract

In this paper we give sufficient conditions for the existence of solutions to the problem of minimizing the integral of [f ( ∇v) + v] on a convex n-dimensional set Ω . Here f is nonnegative, nonconvex, Borel-measurable, and vanishes on the boundary of a convex n-dimensional set K.
1998
228
177
199
Existence of solutions for a class of non convex minimum problems / P., Celada; Perrotta, Stefania; G., Treu. - In: MATHEMATISCHE ZEITSCHRIFT. - ISSN 0025-5874. - STAMPA. - 228:(1998), pp. 177-199.
P., Celada; Perrotta, Stefania; G., Treu
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/8436
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 13
social impact