The screening of a differential library from precursor and differentiated oligodendrocytes, obtained through the representational difference analysis (RDA) technique, has generated a number of cDNA recombinants corresponding to mRNA coding for known and unknown proteins: (1) mRNA coding for proteins involved in protein synthesis, (2) mRNA coding for proteins involved in the organization of the cytoskeleton, and (3) mRNA coding for proteins of unknown function. The expression profile of the mRNA was studied by Northern blot hybridization to the poly-A(+) mRNA from primary rat progenitor and differentiated oligodendrocytes. In most cases, hybridization to the precursor was higher than hybridization to the differentiated mRNA, supporting the validity of the differential screening. Hybridization of the cDNA to rat cerebral hemisphere and brain stem poly-A(+) mRNA, isolated from 1- to 90-day-old rats, confirms the results obtained with the mRNA from differentiating oligodendrocytes. The intensity of the hybridization bands decreases as differentiation proceeds. The pattern of expression observed in oligodendrocytes is different from that found in the brain only in the case of the nexin-1 mRNA, the level of which remains essentially constant throughout differentiation both in the brain stem and in the cerebral hemispheres, in agreement with the published data. In contrast, the intensity of hybridization to the oligodendrocyte mRNA is dramatically lower in the differentiated cells compared with the progenitor oligodendrocyte cells. Some of the recombinant cDNA represent mRNA sequences present at high frequency distribution in the cells, while others belong to the rare sequences group. Six recombinants code for proteins of the ribosomal family, suggesting that of approximately 70 known ribosomal proteins, only a few are upregulated during oligodendrocyte differentiation. The third category of open reading frame (ORF) is represented by rare messengers coding for proteins of unknown functions and includes six clones: RDA 279, 11, 95, 96, 254, and 288. (C) 2002 Wiley-Liss, Inc.

Stage-specific gene expression in early differentiating oligodendrocytes / F., Blasi; A., Ciarrocchi; A., Luddi; M., Strazza; Riccio, Massimo; S., Santi; R., Arcone; C., Pietropaolo; R., D'Angelo; E., Costantino Ceccarini; M., Melli. - In: GLIA. - ISSN 0894-1491. - STAMPA. - 39:2(2002), pp. 114-123. [10.1002/glia.10092]

Stage-specific gene expression in early differentiating oligodendrocytes

RICCIO, Massimo;
2002

Abstract

The screening of a differential library from precursor and differentiated oligodendrocytes, obtained through the representational difference analysis (RDA) technique, has generated a number of cDNA recombinants corresponding to mRNA coding for known and unknown proteins: (1) mRNA coding for proteins involved in protein synthesis, (2) mRNA coding for proteins involved in the organization of the cytoskeleton, and (3) mRNA coding for proteins of unknown function. The expression profile of the mRNA was studied by Northern blot hybridization to the poly-A(+) mRNA from primary rat progenitor and differentiated oligodendrocytes. In most cases, hybridization to the precursor was higher than hybridization to the differentiated mRNA, supporting the validity of the differential screening. Hybridization of the cDNA to rat cerebral hemisphere and brain stem poly-A(+) mRNA, isolated from 1- to 90-day-old rats, confirms the results obtained with the mRNA from differentiating oligodendrocytes. The intensity of the hybridization bands decreases as differentiation proceeds. The pattern of expression observed in oligodendrocytes is different from that found in the brain only in the case of the nexin-1 mRNA, the level of which remains essentially constant throughout differentiation both in the brain stem and in the cerebral hemispheres, in agreement with the published data. In contrast, the intensity of hybridization to the oligodendrocyte mRNA is dramatically lower in the differentiated cells compared with the progenitor oligodendrocyte cells. Some of the recombinant cDNA represent mRNA sequences present at high frequency distribution in the cells, while others belong to the rare sequences group. Six recombinants code for proteins of the ribosomal family, suggesting that of approximately 70 known ribosomal proteins, only a few are upregulated during oligodendrocyte differentiation. The third category of open reading frame (ORF) is represented by rare messengers coding for proteins of unknown functions and includes six clones: RDA 279, 11, 95, 96, 254, and 288. (C) 2002 Wiley-Liss, Inc.
2002
39
2
114
123
Stage-specific gene expression in early differentiating oligodendrocytes / F., Blasi; A., Ciarrocchi; A., Luddi; M., Strazza; Riccio, Massimo; S., Santi; R., Arcone; C., Pietropaolo; R., D'Angelo; E., Costantino Ceccarini; M., Melli. - In: GLIA. - ISSN 0894-1491. - STAMPA. - 39:2(2002), pp. 114-123. [10.1002/glia.10092]
F., Blasi; A., Ciarrocchi; A., Luddi; M., Strazza; Riccio, Massimo; S., Santi; R., Arcone; C., Pietropaolo; R., D'Angelo; E., Costantino Ceccarini; M....espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/797712
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact