In several supervised learning applications, it happens that reconstruction methods have to be applied repeatedly before being able to achieve the final solution. In these situations, the availability of learning algorithms able to provide effective predictors in a very short time may lead to remarkable improvements in the overall computational requirement. Here we consider the kernel ridge regression problem and we look for predictors given by a linear combination of kernel functions plus a constant term, showing that an effective solution can be obtained very fastly by applying specific regularization algorithms directly to the linear system arising from the Empirical Risk Minimization problem.

A practical use of regularization for supervised learning with kernel methods / Prato, Marco; Zanni, Luca. - STAMPA. - (2012). (Intervento presentato al convegno . tenutosi a Modena nel 20-21 settembre 2012).

A practical use of regularization for supervised learning with kernel methods

PRATO, Marco;ZANNI, Luca
2012

Abstract

In several supervised learning applications, it happens that reconstruction methods have to be applied repeatedly before being able to achieve the final solution. In these situations, the availability of learning algorithms able to provide effective predictors in a very short time may lead to remarkable improvements in the overall computational requirement. Here we consider the kernel ridge regression problem and we look for predictors given by a linear combination of kernel functions plus a constant term, showing that an effective solution can be obtained very fastly by applying specific regularization algorithms directly to the linear system arising from the Empirical Risk Minimization problem.
2012
.
Modena
20-21 settembre 2012
Prato, Marco; Zanni, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/797291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact