Parameters correlated to surface roughness are quite commonly used to describe landslide activity in quantitative geomorphology. Previous studies proved that topographic roughness is closely related to both landslide mechanics and features. A number of different techniques have emerged over the years to describe quantitatively the great variety of landforms and processes that affect unstable slopes. In this work we perform a comparative analysis of severalmethods used in literature to compute surface roughness (root mean square applied to elevation and slope grids, eigenvalue ratios, semivariance, discrete Fourier transform, continuous wavelet transform and wavelet lifting scheme) in order to evaluate quantitatively which algorithms are best suited to discriminate active landslides and to predict them for automated mapping purposes. A first test was carried out on artificial surfaces simulating different roughness patterns encountered in nature, so to highlight advantages and limits in controlled conditions. Then, the algorithms were applied to LiDAR datasets of two earth flow case studies in the Northern Apennines, Italy. Results obtained by using “effect-size” statistical test to objectively quantify the capability of the different algorithms of discriminating active landslide slopes from other slope types showed that most algorithms perform reasonablywell and that simple techniques (RMS-based and wavelet lifting scheme) achieve equal or sometimes even better results thatmore complex ones. Results fromthe use of roughness indexes for the prediction of landslide slopes in automated mapping showed that non-forested active slopes could be predicted bymostmethods with an accuracy greater than 85% and that most methods had a 15% drop in prediction accuracy in forested active slopes. Results also proved that increasing the size of the moving window has minor beneficial effects in predictive capability, suggesting that small size of pixels and moving windows should be used to retain a full resolution of surface conditions in slopes.

Comparative analysis of surface roughness algorithms for the identification of active landslides / Berti, M.; Corsini, Alessandro; Daehne, Alexander. - In: GEOMORPHOLOGY. - ISSN 0169-555X. - STAMPA. - 182:(2013), pp. 1-18. [10.1016/j.geomorph.2012.10.022]

Comparative analysis of surface roughness algorithms for the identification of active landslides

CORSINI, Alessandro;DAEHNE, Alexander
2013

Abstract

Parameters correlated to surface roughness are quite commonly used to describe landslide activity in quantitative geomorphology. Previous studies proved that topographic roughness is closely related to both landslide mechanics and features. A number of different techniques have emerged over the years to describe quantitatively the great variety of landforms and processes that affect unstable slopes. In this work we perform a comparative analysis of severalmethods used in literature to compute surface roughness (root mean square applied to elevation and slope grids, eigenvalue ratios, semivariance, discrete Fourier transform, continuous wavelet transform and wavelet lifting scheme) in order to evaluate quantitatively which algorithms are best suited to discriminate active landslides and to predict them for automated mapping purposes. A first test was carried out on artificial surfaces simulating different roughness patterns encountered in nature, so to highlight advantages and limits in controlled conditions. Then, the algorithms were applied to LiDAR datasets of two earth flow case studies in the Northern Apennines, Italy. Results obtained by using “effect-size” statistical test to objectively quantify the capability of the different algorithms of discriminating active landslide slopes from other slope types showed that most algorithms perform reasonablywell and that simple techniques (RMS-based and wavelet lifting scheme) achieve equal or sometimes even better results thatmore complex ones. Results fromthe use of roughness indexes for the prediction of landslide slopes in automated mapping showed that non-forested active slopes could be predicted bymostmethods with an accuracy greater than 85% and that most methods had a 15% drop in prediction accuracy in forested active slopes. Results also proved that increasing the size of the moving window has minor beneficial effects in predictive capability, suggesting that small size of pixels and moving windows should be used to retain a full resolution of surface conditions in slopes.
2013
182
1
18
Comparative analysis of surface roughness algorithms for the identification of active landslides / Berti, M.; Corsini, Alessandro; Daehne, Alexander. - In: GEOMORPHOLOGY. - ISSN 0169-555X. - STAMPA. - 182:(2013), pp. 1-18. [10.1016/j.geomorph.2012.10.022]
Berti, M.; Corsini, Alessandro; Daehne, Alexander
File in questo prodotto:
File Dimensione Formato  
2013 - Berti Corsini Daehne - Geomorphology_Roughness 182 (1-18).pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 5.09 MB
Formato Adobe PDF
5.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/784689
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 70
social impact