Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the main sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature and with groundwater sampling followed by determination of major ions (Na+, K+, Mg2+, Ca2+, Cl−, HCO3−, SO42−), tracers (such as Btot and Sr2+), and isotopes (δ18O, δ2H and 3H). Leaching experiments on soil samples, hydrochemical modelling and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of deep and highly mineralised Na-SO4 water (more than 9500 μS cm−1) with non-negligible amounts of Cl− (up to 800 mg l−1). The chemical and isotopic fingerprint of this water points to oilfield water hosted at large depths in the Apennine chain and that uprises through a regional fault line crossing the landslide area. It recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 49 000–85 700 m3 yr−1) and it also partly recharges the landslide body. In both the aquifers, the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This indicates a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains. The paper demonstrates that hydrochemistry should, therefore, be considered as a valuable investigation method to define hydrogeological limits and the groundwater sources in hillslope and to assess groundwater flow patterns in deep-seated landslides

Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring / Cervi, Federico; Ronchetti, Francesco; Martinelli, G.; Bogaard, T. A.; Corsini, Alessandro. - In: HYDROLOGY AND EARTH SYSTEM SCIENCES. - ISSN 1027-5606. - ELETTRONICO. - 16:(2012), pp. 4205-4221. [10.5194/hess-16-4205-2012]

Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring

CERVI, Federico;RONCHETTI, Francesco;CORSINI, Alessandro
2012

Abstract

Changes in soil water content, groundwater flow and a rise in pore water pressure are well-known causal or triggering factors for hillslope instability. Rainfall and snowmelt are generally assumed as the main sources of groundwater recharge. This assumption neglects the role of deep water inflow in highly tectonized areas, a factor that can influence long-term pore-pressure regimes and play a role on local slope instability. This paper aims to assess the origin of groundwater in the Ca' Lita landslide (northern Italian Apennines) and to qualify and quantify the aliquot attributable to deep water inflow. The research is essentially based on in situ monitoring and hydrochemical analyses. It involved 5 yr of continuous monitoring of groundwater levels, electrical conductivity and temperature and with groundwater sampling followed by determination of major ions (Na+, K+, Mg2+, Ca2+, Cl−, HCO3−, SO42−), tracers (such as Btot and Sr2+), and isotopes (δ18O, δ2H and 3H). Leaching experiments on soil samples, hydrochemical modelling and water recharge estimation were also carried out. Results show that the groundwater balance in the Ca' Lita landslide must take into account an inflow of deep and highly mineralised Na-SO4 water (more than 9500 μS cm−1) with non-negligible amounts of Cl− (up to 800 mg l−1). The chemical and isotopic fingerprint of this water points to oilfield water hosted at large depths in the Apennine chain and that uprises through a regional fault line crossing the landslide area. It recharges the aquifer hosted in the bedrock underlying the sliding surface (at a rate of about 49 000–85 700 m3 yr−1) and it also partly recharges the landslide body. In both the aquifers, the hydrochemical imprint of deep water mixed with rainfall and snowmelt water was observed. This indicates a probable influence of deep water inflow on the mobility of the Ca' Lita landslide, a finding that could be applicable to other large landslides occurring in highly tectonized areas in the northern Apennines or in other mountain chains. The paper demonstrates that hydrochemistry should, therefore, be considered as a valuable investigation method to define hydrogeological limits and the groundwater sources in hillslope and to assess groundwater flow patterns in deep-seated landslides
2012
16
4205
4221
Origin and assessment of deep groundwater inflow in the Ca' Lita landslide using hydrochemistry and in situ monitoring / Cervi, Federico; Ronchetti, Francesco; Martinelli, G.; Bogaard, T. A.; Corsini, Alessandro. - In: HYDROLOGY AND EARTH SYSTEM SCIENCES. - ISSN 1027-5606. - ELETTRONICO. - 16:(2012), pp. 4205-4221. [10.5194/hess-16-4205-2012]
Cervi, Federico; Ronchetti, Francesco; Martinelli, G.; Bogaard, T. A.; Corsini, Alessandro
File in questo prodotto:
File Dimensione Formato  
2012 - Cervi et al HESS 16 4205-4221.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 4.35 MB
Formato Adobe PDF
4.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/783489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 39
social impact