We review our theoretical approach to the optical response of low-dimensional semiconductor structures. The method is based on the density-matrix formalism and can treat low-density (excitonic) and high-density (gain) regimes on the same footing while retaining the full complexity of realistic nanostructures. We discuss in particular its generalization for studying the combined effects of dielectric and quantum confinement. as well as novel developments aimed at the analysis of local absorption spectra. We examine the main effects of electron-hole Coulomb correlation on the optical spectra of semiconductor quantum wires, where it determines the suppression of band-edge singularities and the peculiar scaling properties of excitonic binding and non-linearities. On the basis of our recent results on different types of nanostructure, we present a critical discussion of possible strategies for tailoring electron-hole Coulomb interaction, and predicting its influence on near-field spectra.

Theory of excitonic confinement in semiconductor quantum wires / Rossi, F; Goldoni, Guido; Mauritz, O; Molinari, Elisa. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 11:(1999), pp. 5969-5988. [10.1088/0953-8984/11/31/306]

Theory of excitonic confinement in semiconductor quantum wires

GOLDONI, Guido;MOLINARI, Elisa
1999

Abstract

We review our theoretical approach to the optical response of low-dimensional semiconductor structures. The method is based on the density-matrix formalism and can treat low-density (excitonic) and high-density (gain) regimes on the same footing while retaining the full complexity of realistic nanostructures. We discuss in particular its generalization for studying the combined effects of dielectric and quantum confinement. as well as novel developments aimed at the analysis of local absorption spectra. We examine the main effects of electron-hole Coulomb correlation on the optical spectra of semiconductor quantum wires, where it determines the suppression of band-edge singularities and the peculiar scaling properties of excitonic binding and non-linearities. On the basis of our recent results on different types of nanostructure, we present a critical discussion of possible strategies for tailoring electron-hole Coulomb interaction, and predicting its influence on near-field spectra.
1999
11
5969
5988
Theory of excitonic confinement in semiconductor quantum wires / Rossi, F; Goldoni, Guido; Mauritz, O; Molinari, Elisa. - In: JOURNAL OF PHYSICS. CONDENSED MATTER. - ISSN 0953-8984. - STAMPA. - 11:(1999), pp. 5969-5988. [10.1088/0953-8984/11/31/306]
Rossi, F; Goldoni, Guido; Mauritz, O; Molinari, Elisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/7677
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact