Spectral and pseudospectral approximations of the heat equation are analyzed. The solution is represented in a suitable basis constructed with Hermite polynomials. Stability and convergence estimates are given and numerical tests are discussed.

APPROXIMATION OF SOME DIFFUSION EVOLUTION-EQUATIONS IN UNBOUNDED-DOMAINS BY HERMITE FUNCTIONS / Funaro, Daniele; O., Kavian. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - STAMPA. - 57:(1991), pp. 597-619. [10.2307/2938707]

APPROXIMATION OF SOME DIFFUSION EVOLUTION-EQUATIONS IN UNBOUNDED-DOMAINS BY HERMITE FUNCTIONS

FUNARO, Daniele;
1991

Abstract

Spectral and pseudospectral approximations of the heat equation are analyzed. The solution is represented in a suitable basis constructed with Hermite polynomials. Stability and convergence estimates are given and numerical tests are discussed.
57
597
619
APPROXIMATION OF SOME DIFFUSION EVOLUTION-EQUATIONS IN UNBOUNDED-DOMAINS BY HERMITE FUNCTIONS / Funaro, Daniele; O., Kavian. - In: MATHEMATICS OF COMPUTATION. - ISSN 0025-5718. - STAMPA. - 57:(1991), pp. 597-619. [10.2307/2938707]
Funaro, Daniele; O., Kavian
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/761485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 108
social impact