We first prove a new Lyapunov-type theorem which will yield existence of solutions to nonconvex minimum problems involving some hyperbolic equations on rectangular domains with Darboux boundary conditions. Some problems with obstacle and bang-bang results are also considered.

Nonconvex variational problems related to a hyperbolic equation / F., FLORES BAZAN; Perrotta, Stefania. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 37:(1999), pp. 1751-1766.

Nonconvex variational problems related to a hyperbolic equation

PERROTTA, Stefania
1999

Abstract

We first prove a new Lyapunov-type theorem which will yield existence of solutions to nonconvex minimum problems involving some hyperbolic equations on rectangular domains with Darboux boundary conditions. Some problems with obstacle and bang-bang results are also considered.
1999
37
1751
1766
Nonconvex variational problems related to a hyperbolic equation / F., FLORES BAZAN; Perrotta, Stefania. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 37:(1999), pp. 1751-1766.
F., FLORES BAZAN; Perrotta, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/7531
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact