This article describes a computational strategy aimed at studying the structural communication in G-Protein Coupled Receptors (GPCRs) and G proteins. The strategy relies on comparative Molecular Dynamics (MD) simulations and analyses of wild-type (i.e., reference state) vs. mutated (i.e., perturbed state), or free (i.e., reference state) vs. bound (i.e., perturbed state) forms of a GPCR or a G protein. Bound forms of a GPCR include complexes with small ligands and/or receptor dimers/oligomers, whereas bound forms of heterotrimeric GDP-bound G proteins concern the complex with a GPCR. The computational strategy includes structure prediction of a receptor monomer (in the absence of high-resolution structure), a receptor dimer/oligomer, and a receptor-G protein complex, which constitute the inputs of MD simulations. Finally, the analyses of the MD trajectories are instrumental in inferring the structural/dynamics differences between reference and perturbed states of a GPCR or a G protein. In this respect, focus will be put on the analysis of protein structure networks and communication paths.
Modeling the structural communication in supramolecular complexes involving GPCRs / Fanelli, Francesca. - ELETTRONICO. - 914:(2012), pp. 319-336. [10.1007/978-1-62703-023-6_18]
Modeling the structural communication in supramolecular complexes involving GPCRs
FANELLI, Francesca
2012
Abstract
This article describes a computational strategy aimed at studying the structural communication in G-Protein Coupled Receptors (GPCRs) and G proteins. The strategy relies on comparative Molecular Dynamics (MD) simulations and analyses of wild-type (i.e., reference state) vs. mutated (i.e., perturbed state), or free (i.e., reference state) vs. bound (i.e., perturbed state) forms of a GPCR or a G protein. Bound forms of a GPCR include complexes with small ligands and/or receptor dimers/oligomers, whereas bound forms of heterotrimeric GDP-bound G proteins concern the complex with a GPCR. The computational strategy includes structure prediction of a receptor monomer (in the absence of high-resolution structure), a receptor dimer/oligomer, and a receptor-G protein complex, which constitute the inputs of MD simulations. Finally, the analyses of the MD trajectories are instrumental in inferring the structural/dynamics differences between reference and perturbed states of a GPCR or a G protein. In this respect, focus will be put on the analysis of protein structure networks and communication paths.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris