A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.
Toward the development of a low-cost laser Doppler module for ophthalmic microscopes / Cattini, Stefano; Rovati, Luigi. - STAMPA. - 8209:(2012), pp. 82091V-82091V. (Intervento presentato al convegno BIOS 2012 tenutosi a San Francisco, CA, usa nel January 24-26) [10.1117/12.908108].
Toward the development of a low-cost laser Doppler module for ophthalmic microscopes
CATTINI, Stefano;ROVATI, Luigi
2012
Abstract
A laser Doppler module easily integrated into a commercial ophthalmic microscope is proposed. Such setup adds flow measurement capability to standard visual inspection of the fundus. The proposed instrument may provide important clinical information such as the detection of vessel occlusion provided by surgical treatments (i.e. photocoagulation). The measuring system is based on a self-mixing laser diode Doppler flowmeter (SM-DF). Reduced costs, easy implementation and small size represent the main features of SM-DF. Moreover, this technique offers the advantage to have the excitation and measurement beams spatially overlapped, thus both overcoming the alignment difficulty of traditional laser Doppler flowmeter and, well fitting with to limited optical aperture of the pupil. Thanks to an on-board DSP-microcontroller, the optoelectronic module directly estimates the blood flow; USB connection and an ad-hoc developed user-friendly software interface allow displaying the result on a personal computer. Preliminary test demonstrates the applicability of the proposed measuring system.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris