This work compares the performances of three parameterizations for defining parsimonious submodels of binary bidirected graph models. In particular, it shows that the log-mean linear parameterization, recently developed by Roverato and coauthors, provides a useful tool to include in the model additional linear constraints with a clear interpretation in terms of independencies in special subpopulations. The features of the three parameterizations are illustrated through an example based on a data set with seven binary variables.

Binary models of marginal independence: a comparison of different approaches / M., Lupparelli; LA ROCCA, Luca. - ELETTRONICO. - USB Pen:(2012), pp. 1-4. (Intervento presentato al convegno XLVI Scientific Meeting of the Italian Statistical Society tenutosi a Roma nel 20-22 giugno 2012).

Binary models of marginal independence: a comparison of different approaches

LA ROCCA, Luca
2012

Abstract

This work compares the performances of three parameterizations for defining parsimonious submodels of binary bidirected graph models. In particular, it shows that the log-mean linear parameterization, recently developed by Roverato and coauthors, provides a useful tool to include in the model additional linear constraints with a clear interpretation in terms of independencies in special subpopulations. The features of the three parameterizations are illustrated through an example based on a data set with seven binary variables.
2012
XLVI Scientific Meeting of the Italian Statistical Society
Roma
20-22 giugno 2012
USB Pen
1
4
M., Lupparelli; LA ROCCA, Luca
Binary models of marginal independence: a comparison of different approaches / M., Lupparelli; LA ROCCA, Luca. - ELETTRONICO. - USB Pen:(2012), pp. 1-4. (Intervento presentato al convegno XLVI Scientific Meeting of the Italian Statistical Society tenutosi a Roma nel 20-22 giugno 2012).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/738081
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact