Isolated hepatocytes and liver microsomes incubated with monomethyl-1,1 dimethyl- and 1,2 dimethyl-hydrazines produced free radical intermediates which were detected by ESR spectroscopy by using 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) as spin trapping agent. The spectral features of the spin adducts derived from all three hydrazine derivatives corresponded to the values reported for the methyl free radical adduct of 4-POBN. In the microsomal preparations inhibitors of the mixed function oxidase system and the destruction of cytochrome P450 by pretreating the rats with CoCl2 all decreased the free radical formation. Methimazole, an inhibitor of FAD-containing monoxygenase system, similarly decreased the activation of 1,1 dimethyl-hydrazine, but not that of monomethyl- and 1,2 dimethyl-hydrazines. The addition to liver microsomes of physiological concentrations of glutathione (GSH) lowered by approx. 80% the intensities of the ESR signals. Consistently, incubation of isolated hepatocytes with methyl-hydrazines decreased the intracellular GSH content, suggesting that GSH can effectively scavenge the methyl free radicals. The results obtained suggest that methyl free radicals could be the alkylating species responsible for the toxic and/or carcinogenic effect of methyl-hydrazines.
Free radical activation of monomethyl and dimethyl hydrazines in isolated hepatocytes and liver microsomes / E., Albano; Tomasi, Aldo; L., Goria Gatti; Iannone, Anna. - In: FREE RADICAL BIOLOGY & MEDICINE. - ISSN 0891-5849. - STAMPA. - 6:(1989), pp. 3-8.
Free radical activation of monomethyl and dimethyl hydrazines in isolated hepatocytes and liver microsomes
TOMASI, Aldo;IANNONE, Anna
1989
Abstract
Isolated hepatocytes and liver microsomes incubated with monomethyl-1,1 dimethyl- and 1,2 dimethyl-hydrazines produced free radical intermediates which were detected by ESR spectroscopy by using 4-pyridyl-1-oxide-t-butyl nitrone (4-POBN) as spin trapping agent. The spectral features of the spin adducts derived from all three hydrazine derivatives corresponded to the values reported for the methyl free radical adduct of 4-POBN. In the microsomal preparations inhibitors of the mixed function oxidase system and the destruction of cytochrome P450 by pretreating the rats with CoCl2 all decreased the free radical formation. Methimazole, an inhibitor of FAD-containing monoxygenase system, similarly decreased the activation of 1,1 dimethyl-hydrazine, but not that of monomethyl- and 1,2 dimethyl-hydrazines. The addition to liver microsomes of physiological concentrations of glutathione (GSH) lowered by approx. 80% the intensities of the ESR signals. Consistently, incubation of isolated hepatocytes with methyl-hydrazines decreased the intracellular GSH content, suggesting that GSH can effectively scavenge the methyl free radicals. The results obtained suggest that methyl free radicals could be the alkylating species responsible for the toxic and/or carcinogenic effect of methyl-hydrazines.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris