Persistence modules are algebraic constructs that can be used to describe the shape of an object starting from a geometric representation of it. As shape descriptors, persistence modules are not complete, that is they may not distinguish non-equivalent shapes. In this paper we show that one reason for this is that homomorphisms between persistence modules forget the geometric nature of the problem. Therefore we introduce geometric homomorphisms between persistence modules, and show that in some cases they perform better. A combinatorialstructure, the H0-tree, is shown to be an invariant for geometric isomorphism classes in the case of persistence modules obtained through the 0th persistent homology functor.

Persistence Modules, Shape Description, and Completeness / F., Cagliari; M., Ferri; L., Gualandri; Landi, Claudia. - STAMPA. - 7309:(2012), pp. 148-156. ((Intervento presentato al convegno 4th International Workshop on Computational Topology in Image Context (CTIC 2012) tenutosi a Bertinoro (Italy) nel May 28-30, 2012 [10.1007/978-3-642-30238-1_16].

Persistence Modules, Shape Description, and Completeness

LANDI, Claudia
2012

Abstract

Persistence modules are algebraic constructs that can be used to describe the shape of an object starting from a geometric representation of it. As shape descriptors, persistence modules are not complete, that is they may not distinguish non-equivalent shapes. In this paper we show that one reason for this is that homomorphisms between persistence modules forget the geometric nature of the problem. Therefore we introduce geometric homomorphisms between persistence modules, and show that in some cases they perform better. A combinatorialstructure, the H0-tree, is shown to be an invariant for geometric isomorphism classes in the case of persistence modules obtained through the 0th persistent homology functor.
4th International Workshop on Computational Topology in Image Context (CTIC 2012)
Bertinoro (Italy)
May 28-30, 2012
7309
148
156
F., Cagliari; M., Ferri; L., Gualandri; Landi, Claudia
Persistence Modules, Shape Description, and Completeness / F., Cagliari; M., Ferri; L., Gualandri; Landi, Claudia. - STAMPA. - 7309:(2012), pp. 148-156. ((Intervento presentato al convegno 4th International Workshop on Computational Topology in Image Context (CTIC 2012) tenutosi a Bertinoro (Italy) nel May 28-30, 2012 [10.1007/978-3-642-30238-1_16].
File in questo prodotto:
File Dimensione Formato  
CTIC2012_Cagliari et_al.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 226.1 kB
Formato Adobe PDF
226.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/735250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact