The investigation of energy harvesting devices, able to convert freely-available ambient energy into electrical energy, has significantly improved. To this aim, the most suitable form of ambient energy is the kinetic one, being almost ubiquitous and easily accessible. Among the available conversion technologies, piezoelectric energy harvesting devices are one of the most promising, due to their simple configuration and high conversion efficiency. The most demanding task is to identify simple and efficient multi-frequency structures in the ambient vibration range. To this aim, this work proposes four fractal-inspired structures for piezoelectric energy harvesting. Through computational analysis, their frequency response is calculated up to 100Hz. The structures are examined both in the micro and macro scale and the effect of the iteration level of the fractal geometry is also assessed. By considering the bending strain associated to each mode shape, a quantitative criterion to assess the harvesting efficiency of the proposed structures is introduced.

Fractal-inspired multi-frequency structures for piezoelectric harvesting of ambient kinetic energy / Castagnetti, Davide. - ELETTRONICO. - 1:(2010), pp. 725-732. (Intervento presentato al convegno ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010 tenutosi a Philadelphia, Pennsylvania, USA nel 28 Settembre - 1 Ottobre 2010) [10.1115/smasis2010-3653].

Fractal-inspired multi-frequency structures for piezoelectric harvesting of ambient kinetic energy

CASTAGNETTI, Davide
2010

Abstract

The investigation of energy harvesting devices, able to convert freely-available ambient energy into electrical energy, has significantly improved. To this aim, the most suitable form of ambient energy is the kinetic one, being almost ubiquitous and easily accessible. Among the available conversion technologies, piezoelectric energy harvesting devices are one of the most promising, due to their simple configuration and high conversion efficiency. The most demanding task is to identify simple and efficient multi-frequency structures in the ambient vibration range. To this aim, this work proposes four fractal-inspired structures for piezoelectric energy harvesting. Through computational analysis, their frequency response is calculated up to 100Hz. The structures are examined both in the micro and macro scale and the effect of the iteration level of the fractal geometry is also assessed. By considering the bending strain associated to each mode shape, a quantitative criterion to assess the harvesting efficiency of the proposed structures is introduced.
2010
ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010
Philadelphia, Pennsylvania, USA
28 Settembre - 1 Ottobre 2010
1
725
732
Castagnetti, Davide
Fractal-inspired multi-frequency structures for piezoelectric harvesting of ambient kinetic energy / Castagnetti, Davide. - ELETTRONICO. - 1:(2010), pp. 725-732. (Intervento presentato al convegno ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010 tenutosi a Philadelphia, Pennsylvania, USA nel 28 Settembre - 1 Ottobre 2010) [10.1115/smasis2010-3653].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/727657
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact