Polymers capable of reversible “two-way” shape memory behaviour are of great interest for applications where reversible actuation is demanded, and semicrystalline crosslinked systems have been indicated as an interesting solution towards this end. In this work we have explored the two-way shape memory response of semicrystalline poly(ε-caprolactone)-based polymer networks, prepared with various macromolecular architectures starting from linear, three- and four-arm star poly(ε-caprolactone) functionalized with methacrylate end-groups. All the materials have revealed two-way shape memory capabilities. The effect arises from an elongation process that takes place when the material is cooled under an applied load below the crystallization temperature, and that is completely reversed when heated again above melting temperature, in a manner that strongly depends on the applied load and on the material crosslink density. Two-dimensional XRD analysis, carried out on elongated specimens, shows that the elongation on cooling is accompanied by a change in the crystallinity orientation along the direction of stretch.

Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone) / S., Pandini; S., Passera; Messori, Massimo; Paderni, Katia; M., Toselli; A., Gianoncelli; E., Bontempi; T., Riccò. - In: POLYMER. - ISSN 0032-3861. - STAMPA. - 53:(2012), pp. 1915-1924. [10.1016/j.polymer.2012.02.053]

Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone)

MESSORI, Massimo;PADERNI, KATIA;
2012

Abstract

Polymers capable of reversible “two-way” shape memory behaviour are of great interest for applications where reversible actuation is demanded, and semicrystalline crosslinked systems have been indicated as an interesting solution towards this end. In this work we have explored the two-way shape memory response of semicrystalline poly(ε-caprolactone)-based polymer networks, prepared with various macromolecular architectures starting from linear, three- and four-arm star poly(ε-caprolactone) functionalized with methacrylate end-groups. All the materials have revealed two-way shape memory capabilities. The effect arises from an elongation process that takes place when the material is cooled under an applied load below the crystallization temperature, and that is completely reversed when heated again above melting temperature, in a manner that strongly depends on the applied load and on the material crosslink density. Two-dimensional XRD analysis, carried out on elongated specimens, shows that the elongation on cooling is accompanied by a change in the crystallinity orientation along the direction of stretch.
2012
53
1915
1924
Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone) / S., Pandini; S., Passera; Messori, Massimo; Paderni, Katia; M., Toselli; A., Gianoncelli; E., Bontempi; T., Riccò. - In: POLYMER. - ISSN 0032-3861. - STAMPA. - 53:(2012), pp. 1915-1924. [10.1016/j.polymer.2012.02.053]
S., Pandini; S., Passera; Messori, Massimo; Paderni, Katia; M., Toselli; A., Gianoncelli; E., Bontempi; T., Riccò
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/717045
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 138
  • ???jsp.display-item.citation.isi??? 133
social impact