In this paper a formulation of non-linear analysis of an arbitrarily curved, extensible, shear flexible, elastic planar beam is presented. The formulation is based on a new variational principle expressed in terms of stress components. The Euler-Lagrange equation of this principle are the elastokinematic equation related to the curvature and the moment equilibrium equation. The effectiveness of the approach is illustrated through numerical examples.
Cannarozzi, Mario e Molari, L.. "Stress-based formulation of non-linear planar deformations of elastic straight and curved beams" Working paper, DISTART, Università di Bologna, 2008.
Stress-based formulation of non-linear planar deformations of elastic straight and curved beams
CANNAROZZI, Mario;
2008
Abstract
In this paper a formulation of non-linear analysis of an arbitrarily curved, extensible, shear flexible, elastic planar beam is presented. The formulation is based on a new variational principle expressed in terms of stress components. The Euler-Lagrange equation of this principle are the elastokinematic equation related to the curvature and the moment equilibrium equation. The effectiveness of the approach is illustrated through numerical examples.File | Dimensione | Formato | |
---|---|---|---|
NotaTecnica224_2008_cannarozzi_molari.pdf
Accesso riservato
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
268.8 kB
Formato
Adobe PDF
|
268.8 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris