Given a normed space X and a cone K in X, two closed, convex sets A and B in X* are said to be K-equivalent if the support functions of A and B coincide on K. We characterize the greatest set in an equivalence class, analyze the equivalence between two sets, find conditions for the existence and the uniqueness of a minimal set, extending previous results. We give some applications to the study of gauges of convex radiant sets and of cogauges of convex coradiant sets. Moreover we study the minimality of a second order hypodifferential.

Conically equivalent convex sets and applications / Elisa, Caprari; Zaffaroni, Alberto. - In: PACIFIC JOURNAL OF OPTIMIZATION. - ISSN 1348-9151. - STAMPA. - 6:(2010), pp. 281-303.

Conically equivalent convex sets and applications

ZAFFARONI, Alberto
2010

Abstract

Given a normed space X and a cone K in X, two closed, convex sets A and B in X* are said to be K-equivalent if the support functions of A and B coincide on K. We characterize the greatest set in an equivalence class, analyze the equivalence between two sets, find conditions for the existence and the uniqueness of a minimal set, extending previous results. We give some applications to the study of gauges of convex radiant sets and of cogauges of convex coradiant sets. Moreover we study the minimality of a second order hypodifferential.
6
281
303
Conically equivalent convex sets and applications / Elisa, Caprari; Zaffaroni, Alberto. - In: PACIFIC JOURNAL OF OPTIMIZATION. - ISSN 1348-9151. - STAMPA. - 6:(2010), pp. 281-303.
Elisa, Caprari; Zaffaroni, Alberto
File in questo prodotto:
File Dimensione Formato  
equiv-pjo.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 327.38 kB
Formato Adobe PDF
327.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/709383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact