Two integral equations, representing the mechanical response of a 2D infinite plate supported along a line and subject to a transverse concentrated force, are examined. The kernels of the integral operators are of the type (x - y)ln|x - y| and (x - y)^2ln|x - y|.In spite of the fact that these are only weakly singular, the two equations are studied in a more general framework, which allows us to consider also solutions having non-integrable endpoint singularities. The existence and uniqueness of solutions of the equations are discussed and their endpoint singularities detected.Since the two equations are of interest in their own right, some properties of the associated integral operators are examined in a scale of weighted Sobolev type spaces.Then, new results on the existence and uniqueness of integrable solutions of the equations that in some sense are complementary to those previously obtained are derived.
On the integral equation formulations of some 2D contact problems / P., Junghanns; G., Monegato; Strozzi, Antonio. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - ELETTRONICO. - 234(2010), pp. 2808-2825.
Data di pubblicazione: | 2010 |
Titolo: | On the integral equation formulations of some 2D contact problems |
Autore/i: | P., Junghanns; G., Monegato; Strozzi, Antonio |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.cam.2010.01.021 |
Rivista: | |
Volume: | 234 |
Pagina iniziale: | 2808 |
Pagina finale: | 2825 |
Codice identificativo ISI: | WOS:000279199400016 |
Codice identificativo Scopus: | 2-s2.0-77955274761 |
Citazione: | On the integral equation formulations of some 2D contact problems / P., Junghanns; G., Monegato; Strozzi, Antonio. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - ELETTRONICO. - 234(2010), pp. 2808-2825. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Junghanns_et_al_2010.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris