Protein quality control involves molecular chaperones that recognize misfolded proteins thereby preventing their aggregation, and associated co-chaperones that modulate substrate sorting between renaturation and proteasomal degradation. We recently described a new chaperone complex that stimulates degradation of protein substrates by macroautophagy. The complex is formed of HspB8, a member of the HspB family of molecular chaperones, which is found mutated in neuromuscular diseases, and Bag3, a member of the co-chaperone family of Bag domain-containing proteins. In this complex, Bag3 was shown to be responsible for macroautophagy stimulation. Here we analyzed the role of the three Bag3 canonical protein interaction domains. We show that the proline-rich region is essential for the Bag3-mediated stimulation of mutated huntingtin clearance. Surprisingly, deletion of the BAG domain that mediates Bag3 interaction with Hsp70 and Blc-2, did not affect its activity. We propose that in the HspB8- Bag3 complex, HspB8 is responsible for recognizing the misfolded proteins whereas Bag3, at least in part through its proline-rich domain, might recruit and activate the macroautophagy machinery in close proximity to the chaperone-loaded substrates.
HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy / Carra, Serena; Seguin, Sj; Landry, J.. - In: AUTOPHAGY. - ISSN 1554-8627. - ELETTRONICO. - 4:2(2008), pp. 237-239. [10.4161/auto.5407]
HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy
CARRA, Serena;
2008
Abstract
Protein quality control involves molecular chaperones that recognize misfolded proteins thereby preventing their aggregation, and associated co-chaperones that modulate substrate sorting between renaturation and proteasomal degradation. We recently described a new chaperone complex that stimulates degradation of protein substrates by macroautophagy. The complex is formed of HspB8, a member of the HspB family of molecular chaperones, which is found mutated in neuromuscular diseases, and Bag3, a member of the co-chaperone family of Bag domain-containing proteins. In this complex, Bag3 was shown to be responsible for macroautophagy stimulation. Here we analyzed the role of the three Bag3 canonical protein interaction domains. We show that the proline-rich region is essential for the Bag3-mediated stimulation of mutated huntingtin clearance. Surprisingly, deletion of the BAG domain that mediates Bag3 interaction with Hsp70 and Blc-2, did not affect its activity. We propose that in the HspB8- Bag3 complex, HspB8 is responsible for recognizing the misfolded proteins whereas Bag3, at least in part through its proline-rich domain, might recruit and activate the macroautophagy machinery in close proximity to the chaperone-loaded substrates.File | Dimensione | Formato | |
---|---|---|---|
Carra Autophagy 2008.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
346.02 kB
Formato
Adobe PDF
|
346.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris