The effect of fatty acids and L-carnitine on Ca2+ retention in rat liver mitochondria have been studied. Ca(2+)-retention was estimated as a sum of consecutive Ca2+ additions which leaded to transient stimulation of respiration coupled with influx of Ca2+ L-carnitine increases the Ca(2+)-retention; such an effect requires ATP. The Ca(2+)-retention was increased in the presence of 50 microM ATP or ADP. In all cases carboxyatractylate prevented the increase in Ca(2+)-retention. Palmitate and FCCP added at concentrations producing similar stimulating effect on respiration inhibit Ca(2+)-retention to about the same degree. The effect of palmitate is strongly diminished by L-carnitine. Again, the L-carnitine effect requires ATP. The data obtained suggest that the protonophoric effect of fatty acid plays a crucial role in Ca(2+)-dependent damage of mitochondria.
[Damage to calcium ion-loaded mitochondria by fatty acids and the protective effect of carnitine] / V. I., Dedukhova; E. N., Mokhova; A. A., Starkov; Battelli, D; Bellei, Monica; Bobyleva, V.. - In: BIOKHIMIIA. - ISSN 0320-9725. - STAMPA. - 58(4):(1993), pp. 585-589.
[Damage to calcium ion-loaded mitochondria by fatty acids and the protective effect of carnitine]
BELLEI, Monica;
1993
Abstract
The effect of fatty acids and L-carnitine on Ca2+ retention in rat liver mitochondria have been studied. Ca(2+)-retention was estimated as a sum of consecutive Ca2+ additions which leaded to transient stimulation of respiration coupled with influx of Ca2+ L-carnitine increases the Ca(2+)-retention; such an effect requires ATP. The Ca(2+)-retention was increased in the presence of 50 microM ATP or ADP. In all cases carboxyatractylate prevented the increase in Ca(2+)-retention. Palmitate and FCCP added at concentrations producing similar stimulating effect on respiration inhibit Ca(2+)-retention to about the same degree. The effect of palmitate is strongly diminished by L-carnitine. Again, the L-carnitine effect requires ATP. The data obtained suggest that the protonophoric effect of fatty acid plays a crucial role in Ca(2+)-dependent damage of mitochondria.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris