People social interaction analysis is a complex and interesting problem that can be faced from several points of view depending on the application context. In videosurveillance contexts many indicators of people habits and relations exist and, among these, people trajectories analysis can reveal many aspects of the way people behave in social environments. We propose a statistical framework for trajectories mining that analyzes, in an integrated solution, several aspects of the trajectories such as location, shape and speed properties. Three different models are proposed to deal with non-idealities of the selected features in conjunction with a robust inexact- matching similarity measure for comparing sequences with different lengths. Experimental results in a real scenario demonstrates the efficacy of the framework in clustering people trajectories with the purpose of analyze frequent behaviors in complex environments.
People trajectory mining with statistical pattern recognition / Calderara, Simone; Cucchiara, Rita. - STAMPA. - (2010), pp. 1-8. ((Intervento presentato al convegno International Workshop on Socially Intelligent Surveillance and Monitoring tenutosi a San Francisco, USA nel June 13 2010.
Data di pubblicazione: | 2010 |
Titolo: | People trajectory mining with statistical pattern recognition |
Autore/i: | Calderara, Simone; Cucchiara, Rita |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/CVPRW.2010.5543158 |
Codice identificativo Scopus: | 2-s2.0-77956529441 |
Nome del convegno: | International Workshop on Socially Intelligent Surveillance and Monitoring |
Luogo del convegno: | San Francisco, USA |
Data del convegno: | June 13 2010 |
Pagina iniziale: | 1 |
Pagina finale: | 8 |
Citazione: | People trajectory mining with statistical pattern recognition / Calderara, Simone; Cucchiara, Rita. - STAMPA. - (2010), pp. 1-8. ((Intervento presentato al convegno International Workshop on Socially Intelligent Surveillance and Monitoring tenutosi a San Francisco, USA nel June 13 2010. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris