We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor (BF), requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper-parameter, which can be set to its minimal value. We show that our approach produces genuine BFs. The implied prior on the concentration matrix of any complete graph is a data-dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models and show that in this case they coincide with those recently obtained using limiting versions of hyper-inverse Wishart distributions as priors on the graph-constrained covariance matrices.

Objective Bayes factors for Gaussian directed acyclic graphical models / G., Consonni; LA ROCCA, Luca. - In: SCANDINAVIAN JOURNAL OF STATISTICS. - ISSN 0303-6898. - STAMPA. - 39:(2012), pp. 743-756. [10.1111/j.1467-9469.2011.00785.x]

Objective Bayes factors for Gaussian directed acyclic graphical models

LA ROCCA, Luca
2012

Abstract

We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor (BF), requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper-parameter, which can be set to its minimal value. We show that our approach produces genuine BFs. The implied prior on the concentration matrix of any complete graph is a data-dependent Wishart distribution, and this in turn guarantees that Markov equivalent graphs are scored with the same marginal likelihood. We specialize our results to the smaller class of Gaussian decomposable undirected graphical models and show that in this case they coincide with those recently obtained using limiting versions of hyper-inverse Wishart distributions as priors on the graph-constrained covariance matrices.
39
743
756
Objective Bayes factors for Gaussian directed acyclic graphical models / G., Consonni; LA ROCCA, Luca. - In: SCANDINAVIAN JOURNAL OF STATISTICS. - ISSN 0303-6898. - STAMPA. - 39:(2012), pp. 743-756. [10.1111/j.1467-9469.2011.00785.x]
G., Consonni; LA ROCCA, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/703545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact