SrFe12O19 coatings, intended as electromagnetic wave absorbers, were produced by atmospheric plasma spraying (APS) using two different kindsof feedstock powders: spray-dried agglomerates of micrometric SrFe12O19 particles (type-A) or spray-dried agglomerates of raw materials (SrCO3,Fe2O3), reactively sintered at 1100 ◦C (type-B).During spraying, type-A agglomerates either remain unmelted, producing porous coating regions where crystalline hexaferrite is retained, orare disrupted into smaller granules which melt completely, resulting in dense coating regions with no crystalline hexaferrite.The sintered type-B agglomerates possess higher cohesive strength and do not fall apart: the finer ones melt completely, whereas, in the largerones, the outer region melts and infiltrates the porous unmelted core which retains crystalline hexaferrite. Dense coatings can therefore be obtainedwhile preserving high amounts of crystalline hexaferrite even inside the dense areas. Such coatings show magnetic properties that are promisingfor electromagnetic wave absorption applications.
Characterisation of plasma-sprayed SrFe12O19 coatings for electromagnetic wave absorption / K., Bobzin; Bolelli, Giovanni; M., Bruehl; A., Hujanen; P., Lintunen; D., Lisjak; S., Gyergyek; Lusvarghi, Luca. - In: JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. - ISSN 0955-2219. - STAMPA. - 31:8(2011), pp. 1439-1449. [10.1016/j.jeurceramsoc.2011.02.003]
Characterisation of plasma-sprayed SrFe12O19 coatings for electromagnetic wave absorption
BOLELLI, Giovanni;LUSVARGHI, Luca
2011
Abstract
SrFe12O19 coatings, intended as electromagnetic wave absorbers, were produced by atmospheric plasma spraying (APS) using two different kindsof feedstock powders: spray-dried agglomerates of micrometric SrFe12O19 particles (type-A) or spray-dried agglomerates of raw materials (SrCO3,Fe2O3), reactively sintered at 1100 ◦C (type-B).During spraying, type-A agglomerates either remain unmelted, producing porous coating regions where crystalline hexaferrite is retained, orare disrupted into smaller granules which melt completely, resulting in dense coating regions with no crystalline hexaferrite.The sintered type-B agglomerates possess higher cohesive strength and do not fall apart: the finer ones melt completely, whereas, in the largerones, the outer region melts and infiltrates the porous unmelted core which retains crystalline hexaferrite. Dense coatings can therefore be obtainedwhile preserving high amounts of crystalline hexaferrite even inside the dense areas. Such coatings show magnetic properties that are promisingfor electromagnetic wave absorption applications.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris