It has been estimated that at least 50% of the drugs available on the market act on G-protein coupled receptors (GPCRs) and most of these are basically or agonists or antagonists of this type of receptors. Herein, we propose new putative targets for drug development based on recent data on GPCR allosterism and on the existence of receptor mosaics (RMs). The main target for drug development is still GPCRs, but the focus is not the orthosteric binding pocket. According to the mosaic model of the plasma membrane, we mainly discuss the possibility of indirect modulatory pharmacological actions on expression/function of GPCRs. In particular, the following two new targets will be analyzed: a) The possibility of pharmacological interventions on the roamer-type of volume transmission (VT), which allow the intercellular transfer of set of signal molecules such as GPCRs, tetraspanins and ribonucleic acids. Thus, there is the possibility of pharmacological interventions on the decoding capabilities of neurons and/or glial cells by means of an action on composition and release of micro-vesicles. b) The possibility of pharmacological interventions on epigenetic mechanisms by taking into account their inter-relationships with GPCRs. As a matter of fact, there are epigenetic changes that are characteristic of periods of developmental plasticity that could provide a target for therapeutic intervention in the event of brain damage. We believe that almost all the biochemical knowledge presently available on GPCRs can be used in the development of these new pharmacological approaches.
Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms / Agnati, Lf; Guidolin, D; Leo, Giuseppina; Guescini, M; Pizzi, M; Stocchi, V; Spano, Pf; Ghidoni, R; Ciruela, F; Genedani, Susanna; Fuxe, K.. - In: JOURNAL OF RECEPTORS AND SIGNAL TRANSDUCTION. - ISSN 1079-9893. - STAMPA. - 31:5(2011), pp. 315-331. [10.3109/10799893.2011.599393]
Possible new targets for GPCR modulation: allosteric interactions, plasma membrane domains, intercellular transfer and epigenetic mechanisms.
LEO, Giuseppina;GENEDANI, Susanna;
2011
Abstract
It has been estimated that at least 50% of the drugs available on the market act on G-protein coupled receptors (GPCRs) and most of these are basically or agonists or antagonists of this type of receptors. Herein, we propose new putative targets for drug development based on recent data on GPCR allosterism and on the existence of receptor mosaics (RMs). The main target for drug development is still GPCRs, but the focus is not the orthosteric binding pocket. According to the mosaic model of the plasma membrane, we mainly discuss the possibility of indirect modulatory pharmacological actions on expression/function of GPCRs. In particular, the following two new targets will be analyzed: a) The possibility of pharmacological interventions on the roamer-type of volume transmission (VT), which allow the intercellular transfer of set of signal molecules such as GPCRs, tetraspanins and ribonucleic acids. Thus, there is the possibility of pharmacological interventions on the decoding capabilities of neurons and/or glial cells by means of an action on composition and release of micro-vesicles. b) The possibility of pharmacological interventions on epigenetic mechanisms by taking into account their inter-relationships with GPCRs. As a matter of fact, there are epigenetic changes that are characteristic of periods of developmental plasticity that could provide a target for therapeutic intervention in the event of brain damage. We believe that almost all the biochemical knowledge presently available on GPCRs can be used in the development of these new pharmacological approaches.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris