Total knee replacement designs claim characteristic kinematic performance that is rarely assessed in patients. In the present study, in vivo kinematics of a new prosthesis design was measured during activities of daily living. This design is posterior stabilized for which spine-cam interaction coordinates free axial rotation throughout the flexion-extension arc by means of a single radius of curvature for the femoral condyles in the sagittal and frontal planes. Fifteen knees were implanted with this prosthesis, and 3D video-fluoroscopic analysis was performed at 6-month follow-up for three motor tasks. The average range of flexion was 70.1° (range: 60.1-80.2°) during stair-climbing, 74.7° (64.6-84.8°) during chair-rising, and 64.1° (52.9-74.3°) during step-up. The corresponding average rotation on the tibial base-plate of the lines between the medial and lateral contact points was 9.4° (4.0-22.4°), 11.4° (4.6-22.7°), and 11.3° (5.1-18.0°), respectively. The pivot point for these lines was found mostly in the central area of the base-plate. Nearly physiological range of axial rotation can be achieved at the replaced knee during activities of daily living.
In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty / Catani, Fabio; C., Belvedere; A., Ensini; A., Feliciangeli; S., Giannini; A., Leardini. - In: JOURNAL OF ORTHOPAEDIC RESEARCH. - ISSN 0736-0266. - ELETTRONICO. - 29:10(2011), pp. 1484-1490. [10.1002/jor.21397]
In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty.
CATANI, Fabio;
2011
Abstract
Total knee replacement designs claim characteristic kinematic performance that is rarely assessed in patients. In the present study, in vivo kinematics of a new prosthesis design was measured during activities of daily living. This design is posterior stabilized for which spine-cam interaction coordinates free axial rotation throughout the flexion-extension arc by means of a single radius of curvature for the femoral condyles in the sagittal and frontal planes. Fifteen knees were implanted with this prosthesis, and 3D video-fluoroscopic analysis was performed at 6-month follow-up for three motor tasks. The average range of flexion was 70.1° (range: 60.1-80.2°) during stair-climbing, 74.7° (64.6-84.8°) during chair-rising, and 64.1° (52.9-74.3°) during step-up. The corresponding average rotation on the tibial base-plate of the lines between the medial and lateral contact points was 9.4° (4.0-22.4°), 11.4° (4.6-22.7°), and 11.3° (5.1-18.0°), respectively. The pivot point for these lines was found mostly in the central area of the base-plate. Nearly physiological range of axial rotation can be achieved at the replaced knee during activities of daily living.File | Dimensione | Formato | |
---|---|---|---|
Catani_et_al-2011-Journal_of_Orthopaedic_Research.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris