The ultra-low viscosity of cyclic butylene terephthalate oligomers has been exploited to perform their in-situ ring-opening polymerization in the presence of graphene, to obtain homogeneously dispersed poly(butylene terephthalate)/graphene (PBT/G) composites containing 0.5 to 1.0 %wt of graphene. The results of gel permeation chromatography show that increasing amounts of graphene causes a decrease in the average molecular weight of PBT if the time of polymerization is kept constant, and morphological investigations performed by electron microscopy and x-rays diffraction show that high levels of dispersion of the G sheets are easily obtained by this method of composites processing. Thermal properties of the composites were studied by differential scanning calorimetry and thermogravimetric analysis; results indicate that increasing amounts of G do not strongly influence the degree of crystallinity and the crystallization temperature of PBT, while its thermal stability is significantly increased by the presence of G. All the PBT/G composites demonstrated to be electrically conductive; we found that the electric field assisted thermal annealing of the PBT/G composites induces an increase in conductivity.
Preparation and characterization of poly (butylene terephthalate) / graphene composites by in-situ polymerization of cyclic butylene terephthalate / P., Fabbri; Bassoli, Elena; S., Bittolo Bon; L., Valentini. - In: POLYMER. - ISSN 0032-3861. - STAMPA. - 53:4(2012), pp. 897-902. [10.1016/j.polymer.2012.01.015]
Preparation and characterization of poly (butylene terephthalate) / graphene composites by in-situ polymerization of cyclic butylene terephthalate
BASSOLI, Elena;
2012
Abstract
The ultra-low viscosity of cyclic butylene terephthalate oligomers has been exploited to perform their in-situ ring-opening polymerization in the presence of graphene, to obtain homogeneously dispersed poly(butylene terephthalate)/graphene (PBT/G) composites containing 0.5 to 1.0 %wt of graphene. The results of gel permeation chromatography show that increasing amounts of graphene causes a decrease in the average molecular weight of PBT if the time of polymerization is kept constant, and morphological investigations performed by electron microscopy and x-rays diffraction show that high levels of dispersion of the G sheets are easily obtained by this method of composites processing. Thermal properties of the composites were studied by differential scanning calorimetry and thermogravimetric analysis; results indicate that increasing amounts of G do not strongly influence the degree of crystallinity and the crystallization temperature of PBT, while its thermal stability is significantly increased by the presence of G. All the PBT/G composites demonstrated to be electrically conductive; we found that the electric field assisted thermal annealing of the PBT/G composites induces an increase in conductivity.File | Dimensione | Formato | |
---|---|---|---|
JPOL15185.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
651.4 kB
Formato
Adobe PDF
|
651.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris