A Steiner Triple System of order v (briefly STS(v)) is 1-rotational under G if it admits G as an automorphism group acting sharply transitively on all but one point.The spectrum of values of v for which there exists a1-rotational STS(v) under a cyclic, an abelian, or a generalized quaternion group, has beenestablished in 1981 (phelps and Rosa), in 2001 (Buratti) and in 2008 (Mishima), respectively.Nevertheless, the spectrum of values of v for which there exists a1-rotational STS(v) under an arbitrary group has not been completely determined yet.This paper is a considerable step forward to the solution of this problem.In fact, we leave as uncertain cases only those for which we have v = (p^3-p)n + 1 = 1 (mod 96)with p a prime, n =1,2,3 mod 4, and the odd part of (p^3-p)n that is square-free and without prime factors congruent to 1 mod 6.
Some progress on the existence of 1-rotational Steiner Triple Systems / Bonvicini, Simona; M., Buratti; Rinaldi, Gloria; T., Traetta. - In: DESIGNS, CODES AND CRYPTOGRAPHY. - ISSN 0925-1022. - STAMPA. - 62:1(2012), pp. 63-78. [10.1007/s10623-011-9491-3]
Some progress on the existence of 1-rotational Steiner Triple Systems
BONVICINI, Simona;RINALDI, Gloria;
2012
Abstract
A Steiner Triple System of order v (briefly STS(v)) is 1-rotational under G if it admits G as an automorphism group acting sharply transitively on all but one point.The spectrum of values of v for which there exists a1-rotational STS(v) under a cyclic, an abelian, or a generalized quaternion group, has beenestablished in 1981 (phelps and Rosa), in 2001 (Buratti) and in 2008 (Mishima), respectively.Nevertheless, the spectrum of values of v for which there exists a1-rotational STS(v) under an arbitrary group has not been completely determined yet.This paper is a considerable step forward to the solution of this problem.In fact, we leave as uncertain cases only those for which we have v = (p^3-p)n + 1 = 1 (mod 96)with p a prime, n =1,2,3 mod 4, and the odd part of (p^3-p)n that is square-free and without prime factors congruent to 1 mod 6.File | Dimensione | Formato | |
---|---|---|---|
BBRT2012.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
427.69 kB
Formato
Adobe PDF
|
427.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
BBRT_preprint.pdf
Open access
Descrizione: Articolo principale
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
148.23 kB
Formato
Adobe PDF
|
148.23 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris