The granular layer of cerebellum has been long hypothesized to perform combinatorial operations on incoming signals. Although this assumption is at the basis of main computational theories of cerebellum, it has never been assessed experimentally. Here, by applying high-resolution voltage-sensitive dye imaging techniques, we show that simultaneous activation of two partially overlapping mossy fiber bundles (either with single pulses or high-frequency bursts) can cause combined excitation and combined inhibition, which are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory. Combined excitation appeared as an area in which the combination of two inputs is greater than the arithmetic sum of the individual inputs and was enhanced by gamma-aminobutyric acid type A (GABA(A)) receptor blockers. Combined inhibition was manifest as an area where two inputs combined resulted in a reduction to less than half of the activity evoked from either one of the two inputs alone and was prevented by GABA(A) receptor blockers. The combinatorial responses occupied small granular layer regions (approximately 30 microm diameter), with combined inhibition being interspersed among extended areas of combined excitation. Moreover, the combinatorial effects lasted for tens of milliseconds and combined inhibition occurred only after termination of the stimuli. These combinatorial operations, if engaged by natural input patterns in vivo, may be important to influence incoming impulses organizing spatiotemporal spike sequences to be relayed to Purkinje cells
Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer / Mapelli, Jonathan; Gandolfi, D.; D'Angelo, E.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - STAMPA. - 103:1(2010), pp. 250-261. [10.1152/jn.00642.2009]
Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer
MAPELLI, Jonathan;D. Gandolfi;
2010
Abstract
The granular layer of cerebellum has been long hypothesized to perform combinatorial operations on incoming signals. Although this assumption is at the basis of main computational theories of cerebellum, it has never been assessed experimentally. Here, by applying high-resolution voltage-sensitive dye imaging techniques, we show that simultaneous activation of two partially overlapping mossy fiber bundles (either with single pulses or high-frequency bursts) can cause combined excitation and combined inhibition, which are compatible with the concepts of coincidence detection and spatial pattern separation predicted by theory. Combined excitation appeared as an area in which the combination of two inputs is greater than the arithmetic sum of the individual inputs and was enhanced by gamma-aminobutyric acid type A (GABA(A)) receptor blockers. Combined inhibition was manifest as an area where two inputs combined resulted in a reduction to less than half of the activity evoked from either one of the two inputs alone and was prevented by GABA(A) receptor blockers. The combinatorial responses occupied small granular layer regions (approximately 30 microm diameter), with combined inhibition being interspersed among extended areas of combined excitation. Moreover, the combinatorial effects lasted for tens of milliseconds and combined inhibition occurred only after termination of the stimuli. These combinatorial operations, if engaged by natural input patterns in vivo, may be important to influence incoming impulses organizing spatiotemporal spike sequences to be relayed to Purkinje cellsPubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris