Discovering users’ whereabouts patterns is importantfor many emerging ubiquitous computing applications.Life-log systems, advertisement and smart environments areonly some of the applications that can be supported byinformation regarding user patterns and routine behaviors.Latent Dirichlet Allocation (LDA) is a powerful mechanismto extract recurrent behaviors and high-level patterns (calledtopics) from mobility data in an unsupervised manner. In thispaper we test the effectiveness of LDA in identifying users’routine behaviors from mobility data collected with GoogleLatitude. Results show that the proposed technique providesgood results in discovering patterns and routine behaviors.
Discovering Daily Routines from Google Latitude with Topic Models / Ferrari, Laura; Mamei, Marco. - STAMPA. - (2011), pp. 432-437. (Intervento presentato al convegno IEEE Workshop on Context Modeling and Reasoning tenutosi a Seattle (WA), USA nel 3-7 Oct. 2011) [10.1109/PERCOMW.2011.5766928].
Discovering Daily Routines from Google Latitude with Topic Models
FERRARI, Laura;MAMEI, Marco
2011
Abstract
Discovering users’ whereabouts patterns is importantfor many emerging ubiquitous computing applications.Life-log systems, advertisement and smart environments areonly some of the applications that can be supported byinformation regarding user patterns and routine behaviors.Latent Dirichlet Allocation (LDA) is a powerful mechanismto extract recurrent behaviors and high-level patterns (calledtopics) from mobility data in an unsupervised manner. In thispaper we test the effectiveness of LDA in identifying users’routine behaviors from mobility data collected with GoogleLatitude. Results show that the proposed technique providesgood results in discovering patterns and routine behaviors.File | Dimensione | Formato | |
---|---|---|---|
latitude.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris