We consider generic curves in R^2, i.e. generic C^1 functions f : S^1 → R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f . In particular, we consider the question whether these persistent homology groups uniquely characterize f , at least up to reparameterizationsof S^1. We give a partially positive answer to this question.More precisely, we prove that f = g ◦ h, where h : S^1 → S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of s ◦ f and s ◦g coincide, for every s belonging to the group S generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in themax-norm (up to re-parameterizations)if and only if, for every s in S, the persistent Betti number functions of s ◦ f and s ◦ g are close to each other, with respect to a suitable distance.

Uniqueness of models in persistent homology: the case of curves / P., Frosini; Landi, Claudia. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 27:(2011), pp. ---. [10.1088/0266-5611/27/12/124005]

Uniqueness of models in persistent homology: the case of curves

LANDI, Claudia
2011

Abstract

We consider generic curves in R^2, i.e. generic C^1 functions f : S^1 → R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f . In particular, we consider the question whether these persistent homology groups uniquely characterize f , at least up to reparameterizationsof S^1. We give a partially positive answer to this question.More precisely, we prove that f = g ◦ h, where h : S^1 → S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of s ◦ f and s ◦g coincide, for every s belonging to the group S generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in themax-norm (up to re-parameterizations)if and only if, for every s in S, the persistent Betti number functions of s ◦ f and s ◦ g are close to each other, with respect to a suitable distance.
27
-
-
Uniqueness of models in persistent homology: the case of curves / P., Frosini; Landi, Claudia. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 27:(2011), pp. ---. [10.1088/0266-5611/27/12/124005]
P., Frosini; Landi, Claudia
File in questo prodotto:
File Dimensione Formato  
InverseProblems.pdf

non disponibili

Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 392.95 kB
Formato Adobe PDF
392.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/686661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact