We consider generic curves in R^2, i.e. generic C^1 functions f : S^1 → R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f . In particular, we consider the question whether these persistent homology groups uniquely characterize f , at least up to reparameterizationsof S^1. We give a partially positive answer to this question.More precisely, we prove that f = g ◦ h, where h : S^1 → S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of s ◦ f and s ◦g coincide, for every s belonging to the group S generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in themax-norm (up to re-parameterizations)if and only if, for every s in S, the persistent Betti number functions of s ◦ f and s ◦ g are close to each other, with respect to a suitable distance.
Uniqueness of models in persistent homology: the case of curves / P., Frosini; Landi, Claudia. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 27:12(2011), pp. ---. [10.1088/0266-5611/27/12/124005]
Uniqueness of models in persistent homology: the case of curves
LANDI, Claudia
2011
Abstract
We consider generic curves in R^2, i.e. generic C^1 functions f : S^1 → R^2. We analyze these curves through the persistent homology groups of a filtration induced on S^1 by f . In particular, we consider the question whether these persistent homology groups uniquely characterize f , at least up to reparameterizationsof S^1. We give a partially positive answer to this question.More precisely, we prove that f = g ◦ h, where h : S^1 → S^1 is a C^1-diffeomorphism, if and only if the persistent homology groups of s ◦ f and s ◦g coincide, for every s belonging to the group S generated by reflections in the coordinate axes. Moreover, for a smaller set of generic functions, we show that f and g are close to each other in themax-norm (up to re-parameterizations)if and only if, for every s in S, the persistent Betti number functions of s ◦ f and s ◦ g are close to each other, with respect to a suitable distance.File | Dimensione | Formato | |
---|---|---|---|
InverseProblems.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
392.95 kB
Formato
Adobe PDF
|
392.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris