We study two families of closed orientable three-dimensional manifolds, which are defined as cyclic generalizations of two hyperbolic icosahedral manifolds, which were described first by Richardson and Rubinstein and then by Everitt. Results about covering properties, fundamental groups and hyperbolic volumes are proved for the manifolds belonging to these families. In particular, we show that they are cyclic coverings of the lens space L(3,1) branched over some 2- or 3-component links.

Cyclic generalizations of two hyperbolic icosahedral manifolds / Cristofori, Paola; T., Kozlovskaya; A., Vesnin. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - STAMPA. - 159, Issue 8:(2012), pp. 2071-2081. [10.1016/j.topol.2012.01.016]

Cyclic generalizations of two hyperbolic icosahedral manifolds

CRISTOFORI, Paola;
2012

Abstract

We study two families of closed orientable three-dimensional manifolds, which are defined as cyclic generalizations of two hyperbolic icosahedral manifolds, which were described first by Richardson and Rubinstein and then by Everitt. Results about covering properties, fundamental groups and hyperbolic volumes are proved for the manifolds belonging to these families. In particular, we show that they are cyclic coverings of the lens space L(3,1) branched over some 2- or 3-component links.
159, Issue 8
2071
2081
Cyclic generalizations of two hyperbolic icosahedral manifolds / Cristofori, Paola; T., Kozlovskaya; A., Vesnin. - In: TOPOLOGY AND ITS APPLICATIONS. - ISSN 0166-8641. - STAMPA. - 159, Issue 8:(2012), pp. 2071-2081. [10.1016/j.topol.2012.01.016]
Cristofori, Paola; T., Kozlovskaya; A., Vesnin
File in questo prodotto:
File Dimensione Formato  
Cristofori-Kozlovskaia-Vesnin_TAIA_2012.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 510.48 kB
Formato Adobe PDF
510.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/684332
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact