Hidden Markov Models (HMMs) are today employed in a varietyof applications, ranging from speech recognition to bioinformatics.In this paper, we present the List Viterbi training algorithm, aversion of the Expectation-Maximization (EM) algorithm based onthe List Viterbi algorithm instead of the commonly used forwardbackwardalgorithm. We developed the batch and online versionsof the algorithm, and we also describe an interesting application inthe context of keyword search over databases, where we exploit aHMM for matching keywords into database terms. In our experimentswe tested the online version of the training algorithm in asemi-supervised setting that allows us to take into account the feedbacksprovided by the users.
The List Viterbi Training Algorithm and Its Application to Keyword Search over Databases / Rota, Silvia; Bergamaschi, Sonia; Guerra, Francesco. - ELETTRONICO. - (2011), pp. 1601-1606. (Intervento presentato al convegno CIKM’11 tenutosi a Glasgow nel October 24–28, 2011) [10.1145/2063576.2063808].
The List Viterbi Training Algorithm and Its Application to Keyword Search over Databases
ROTA, SILVIA;BERGAMASCHI, Sonia;GUERRA, Francesco
2011
Abstract
Hidden Markov Models (HMMs) are today employed in a varietyof applications, ranging from speech recognition to bioinformatics.In this paper, we present the List Viterbi training algorithm, aversion of the Expectation-Maximization (EM) algorithm based onthe List Viterbi algorithm instead of the commonly used forwardbackwardalgorithm. We developed the batch and online versionsof the algorithm, and we also describe an interesting application inthe context of keyword search over databases, where we exploit aHMM for matching keywords into database terms. In our experimentswe tested the online version of the training algorithm in asemi-supervised setting that allows us to take into account the feedbacksprovided by the users.File | Dimensione | Formato | |
---|---|---|---|
PAPER_14_p1601-rota.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
727.26 kB
Formato
Adobe PDF
|
727.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
report_cikm.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
302.69 kB
Formato
Adobe PDF
|
302.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris