We present a novel method for translating keyword queries over relationaldatabases into SQL queries with the same intended semantic meaning. Incontrast to the majority of the existing keyword-based techniques, our approachdoes not require any a-priori knowledge of the data instance. It follows a probabilisticapproach based on a Hidden Markov Model for computing the top-K bestmappings of the query keywords into the database terms, i.e., tables, attributesand values. The mappings are then used to generate the SQL queries that areexecuted to produce the answer to the keyword query. The method has been implementedinto a system called KEYRY (from KEYword to queRY).
A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases / Bergamaschi, Sonia; Guerra, Francesco; Rota, Silvia; Yannis, Velegrakis. - ELETTRONICO. - 6998:(2011), pp. 411-420. (Intervento presentato al convegno 30th International Conference on Conceptual Modeling, ER 2011 tenutosi a Brussels, bel nel 30/10/2011 - 03/11/2011) [10.1007/978-3-642-24606-7_31].
A Hidden Markov Model Approach to Keyword-Based Search over Relational Databases
BERGAMASCHI, Sonia;GUERRA, Francesco;ROTA, SILVIA;
2011
Abstract
We present a novel method for translating keyword queries over relationaldatabases into SQL queries with the same intended semantic meaning. Incontrast to the majority of the existing keyword-based techniques, our approachdoes not require any a-priori knowledge of the data instance. It follows a probabilisticapproach based on a Hidden Markov Model for computing the top-K bestmappings of the query keywords into the database terms, i.e., tables, attributesand values. The mappings are then used to generate the SQL queries that areexecuted to produce the answer to the keyword query. The method has been implementedinto a system called KEYRY (from KEYword to queRY).File | Dimensione | Formato | |
---|---|---|---|
report.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
219.76 kB
Formato
Adobe PDF
|
219.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris