Semilinear multivalued equations are considered, in separable Ba-nach spaces with the Radon-Nikodym property. An effective criterion for the existence of solutions to the associated Floquet boundary value problem is showed. Its proof is obtained combining a continuation principle with a Liapunov-like technique and a Scorza-Dragoni type theorem. A strictly localized transversality condition is assumed. The employed method enables to localize the solution values in a not necessarily invariant set; it allows also to introduce nonlinearities with superlinear growth in the state variable.
Strictly localized bounding functions and Floquet boundary value problems / S., Cecchini; Malaguti, Luisa; Taddei, Valentina. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - ELETTRONICO. - 2011:47(2011), pp. 1-18. [10.14232/ejqtde.2011.1.47]
Strictly localized bounding functions and Floquet boundary value problems
MALAGUTI, Luisa;TADDEI, Valentina
2011
Abstract
Semilinear multivalued equations are considered, in separable Ba-nach spaces with the Radon-Nikodym property. An effective criterion for the existence of solutions to the associated Floquet boundary value problem is showed. Its proof is obtained combining a continuation principle with a Liapunov-like technique and a Scorza-Dragoni type theorem. A strictly localized transversality condition is assumed. The employed method enables to localize the solution values in a not necessarily invariant set; it allows also to introduce nonlinearities with superlinear growth in the state variable.File | Dimensione | Formato | |
---|---|---|---|
Cecchini Malaguti Taddei 2011.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
203.1 kB
Formato
Adobe PDF
|
203.1 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris