This paper presents a global optimization method focused on gear vibration reduction by means of profile modifications. A nonlinear dynamic model is used to study the vibration behavior; such model is validated using data available in literature. The optimization method considers different regimes and torque levels; the objective function can be the static transmission error or the maximum amplitude of the gear vibration in terms of dynamic transmission error. The procedure finds the optimal profile modification that reduces the vibrations over a wide range of operating conditions. In order to reduce the computational cost, a Random–Simplex optimization algorithm is developed; the optimum reliability is estimated using a Monte Carlo simulation. The approach shows good performances for the computational efficiency as well as the reliability of results. Finally, an application to High Contact Ratio (HCR) gears is presented and an extremely good performance is obtained by combining optimization procedures and HCR properties.
Dynamic Optimization of Spur Gears / M., Faggioni; F. S., Samani; G., Bertacchi; Pellicano, Francesco. - In: MECHANISM AND MACHINE THEORY. - ISSN 0094-114X. - STAMPA. - 46:4(2011), pp. 544-557. [10.1016/j.mechmachtheory.2010.11.005]
Dynamic Optimization of Spur Gears
PELLICANO, Francesco
2011
Abstract
This paper presents a global optimization method focused on gear vibration reduction by means of profile modifications. A nonlinear dynamic model is used to study the vibration behavior; such model is validated using data available in literature. The optimization method considers different regimes and torque levels; the objective function can be the static transmission error or the maximum amplitude of the gear vibration in terms of dynamic transmission error. The procedure finds the optimal profile modification that reduces the vibrations over a wide range of operating conditions. In order to reduce the computational cost, a Random–Simplex optimization algorithm is developed; the optimum reliability is estimated using a Monte Carlo simulation. The approach shows good performances for the computational efficiency as well as the reliability of results. Finally, an application to High Contact Ratio (HCR) gears is presented and an extremely good performance is obtained by combining optimization procedures and HCR properties.File | Dimensione | Formato | |
---|---|---|---|
39-mech-machine-theory-2011-faggioni-et al.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.55 MB
Formato
Adobe PDF
|
1.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris