Keyword queries offer a convenient alternative to traditionalSQL in querying relational databases with large, often unknown,schemas and instances. The challenge in answering such queriesis to discover their intended semantics, construct the SQL queriesthat describe them and used them to retrieve the respective tuples.Existing approaches typically rely on indices built a-priori on thedatabase content. This seriously limits their applicability if a-prioriaccess to the database content is not possible. Examples include theon-line databases accessed through web interface, or the sources ininformation integration systems that operate behind wrappers withspecific query capabilities. Furthermore, existing literature has notstudied to its full extend the inter-dependencies across the ways thedifferent keywords are mapped into the database values and schemaelements. In this work, we describe a novel technique for translatingkeyword queries into SQL based on the Munkres (a.k.a. Hungarian)algorithm. Our approach not only tackles the above twolimitations, but it offers significant improvements in the identificationof the semantically meaningful SQL queries that describe theintended keyword query semantics. We provide details of the techniqueimplementation and an extensive experimental evaluation.

Keyword search over relational databases: a metadata approach / Bergamaschi, Sonia; Domnori, Elton; Guerra, Francesco; Raquel Trillo, Lado; Yannis, Velegrakis. - In: PROCEEDINGS - ACM-SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA. - ISSN 0730-8078. - STAMPA. - (2011), pp. 565-576. (Intervento presentato al convegno 2011 ACM SIGMOD and 30th PODS 2011 Conference tenutosi a Athens nel June 12-16, 2011) [10.1145/1989323.1989383].

Keyword search over relational databases: a metadata approach

BERGAMASCHI, Sonia;DOMNORI, Elton;GUERRA, Francesco;
2011

Abstract

Keyword queries offer a convenient alternative to traditionalSQL in querying relational databases with large, often unknown,schemas and instances. The challenge in answering such queriesis to discover their intended semantics, construct the SQL queriesthat describe them and used them to retrieve the respective tuples.Existing approaches typically rely on indices built a-priori on thedatabase content. This seriously limits their applicability if a-prioriaccess to the database content is not possible. Examples include theon-line databases accessed through web interface, or the sources ininformation integration systems that operate behind wrappers withspecific query capabilities. Furthermore, existing literature has notstudied to its full extend the inter-dependencies across the ways thedifferent keywords are mapped into the database values and schemaelements. In this work, we describe a novel technique for translatingkeyword queries into SQL based on the Munkres (a.k.a. Hungarian)algorithm. Our approach not only tackles the above twolimitations, but it offers significant improvements in the identificationof the semantically meaningful SQL queries that describe theintended keyword query semantics. We provide details of the techniqueimplementation and an extensive experimental evaluation.
2011
2011 ACM SIGMOD and 30th PODS 2011 Conference
Athens
June 12-16, 2011
565
576
Bergamaschi, Sonia; Domnori, Elton; Guerra, Francesco; Raquel Trillo, Lado; Yannis, Velegrakis
Keyword search over relational databases: a metadata approach / Bergamaschi, Sonia; Domnori, Elton; Guerra, Francesco; Raquel Trillo, Lado; Yannis, Velegrakis. - In: PROCEEDINGS - ACM-SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA. - ISSN 0730-8078. - STAMPA. - (2011), pp. 565-576. (Intervento presentato al convegno 2011 ACM SIGMOD and 30th PODS 2011 Conference tenutosi a Athens nel June 12-16, 2011) [10.1145/1989323.1989383].
File in questo prodotto:
File Dimensione Formato  
p565-bergamaschi.pdf

Accesso riservato

Descrizione: Articolo
Tipologia: Versione pubblicata dall'editore
Dimensione 840.19 kB
Formato Adobe PDF
840.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/654435
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 96
  • ???jsp.display-item.citation.isi??? ND
social impact